K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

`A=(6sqrtx+8)/(3sqrtx+2)`

`=(6sqrtx+4+4)/(3sqrtx+2)`

`=2+4/(3sqrtx+2)>2AAx>=0(1)`

Vì `3sqrtx>=0`

`=>3sqrtx+2>=2`

`=>4/(3sqrtx+2)<=2`

`=>A<=4(2)`

`(1)(2)=>2<A<=4`

Mà `A in ZZ`

`=>A in {3,4}`

`**A=3`

`<=>4/(3sqrtx+2)=1`

`<=>4=3sqrtx+2`

`<=>3sqrtx=2`

`<=>x=4/9`

`**A=4`

`<=>4/(3sqrtx+2)=2`

`<=>6sqrtx+4=4`

`<=>6sqrtx=0`

`<=>sqrtx=0`

`<=>x=0`

23 tháng 6 2021

đk: \(x\ge0\)

A = \(\dfrac{2\left(3\sqrt{x}+2\right)+4}{3\sqrt{x}+2}\)

\(2+\dfrac{4}{3\sqrt{x}+2}\)

Để A \(\in Z\)

<=> \(4⋮3\sqrt{x}+2\)

Ta có bảng:

\(3\sqrt{x}+2\)1-12-24-4
x\(\varnothing\)\(\varnothing\)0\(\varnothing\)\(\dfrac{4}{9}\)\(\varnothing\)
   tm tm 

 

 

23 tháng 6 2021

A = \(\dfrac{2\left(3\sqrt{x}+2\right)+4}{3\sqrt{x}+2}\)

\(2+\dfrac{4}{3\sqrt{x}+2}\)

Để A nguyên

<=> \(\dfrac{4}{3\sqrt{x}+2}\) nguyên

<=> \(4⋮3\sqrt{x}+2\)

Ta có bảngg

\(3\sqrt{x}+2\)1-12-24-4
x\(\varnothing\)\(\varnothing\)0\(\varnothing\)\(\dfrac{4}{9}\)\(\varnothing\)
Thử lại  tm loại 

KL: x = 0

 

23 tháng 6 2021

A=\(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}\)=\(\dfrac{2(3\sqrt{x}+4)}{3\sqrt{x}+2}\)=\(2\cdot\left(1+\dfrac{2}{3\sqrt{x}+2}\right)\)

Để A∈Z

Thì \(3\sqrt{x}+2\)∈Ư(2)

Tức là \(3\sqrt{x}+2\)\(\left\{1;-1;2;-2\right\}\)

\(3\sqrt{x}+2=1\)(vô lí);\(3\sqrt{x}+2=-1\)(vô lí);\(3\sqrt{x}+2=-2\)(vô lí)

\(3\sqrt{x}+2=2\)=>x=0

Vì 0∈Z

Vậy x=0 thì thỏa mãn đề bài

 

19 tháng 10 2020

Đề: Dẫn 17,92 lít khí hidro đi qua ống sứ m gam , 1 oxit sắt FexOy nung nóng sau phản ứng thu được 2,4*10^23 phân tử nước và hỗn hợp X gồm 2 chất rắng nặng 28.4 g

25 tháng 8 2019

\(a,\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\)( luôn đúng ) 

\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3

Câu 19. Giải phương trình: .

Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.

Câu 21. Cho .

Hãy so sánh S và .

Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:

Câu 24. Chứng minh rằng các số sau là số vô tỉ:

Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?

Câu 26. Cho các số x và y khác 0. Chứng minh rằng:

Câu 27. Cho các số x, y, z dương. Chứng minh rằng:

Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 34. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 35. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

Câu 42.

a) Chứng minh rằng: | A + B | ≤ | A | + | B |. Dấu “ = ” xảy ra khi nào?

b) Tìm giá trị nhỏ nhất của biểu thức sau: .

c) Giải phương trình: 

Câu 43. Giải phương trình: .

Câu 44. Tìm các giá trị của x để các biểu thức sau có nghĩa:

3
21 tháng 8 2020

Câu 1:

G/s \(\sqrt{7}\) là số hữu tỉ có thể viết dưới dạng phân số tối giản \(\frac{a}{b}\) \(\left(a,b\inℤ\right)\)

=> \(\frac{a}{b}=\sqrt{7}\)

<=> \(\left(\frac{a}{b}\right)^2=7\)

=> \(a^2=7b^2\)

=> \(a^2⋮b^2\) , mà theo đề bài phân số tối giản

=> a không chia hết cho b => a2 không chia hết cho b2 

=> vô lý

=> \(\sqrt{7}\) là số vô tỉ

21 tháng 8 2020

Câu 2:

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) Ta có: \(\left(ac+bd\right)^2=a^2c^2+2abcd+b^2d^2\)

\(=a^2c^2+2\sqrt{a^2d^2.b^2c^2}+b^2d^2\)

\(\le a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ( bất đẳng thức Cauchy )

Dấu "=" xảy ra khi: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

NV
12 tháng 1 2024

a.

FN là tiếp tuyến tại N \(\Rightarrow\widehat{FNO}=90^0\)

\(\Rightarrow\) 2 điểm P và N cùng nhìn OF dưới 1 góc vuông nên tứ giác ONFP nội tiếp đường tròn đường kính ON

b.

Trong tam giác MQF, do \(PQ\perp ME\) và \(MN\perp FQ\Rightarrow O\) là trực tâm

\(\Rightarrow FO\perp MQ\) tại D

Hai điểm D và N cùng nhìn MF dưới 1 góc vuông

\(\Rightarrow DNFM\) nội tiếp

\(\Rightarrow\widehat{FDN}=\widehat{FMN}\) (cùng chắn FN) (1)

Hai điểm D và P cùng nhìn OM dưới 1 góc vuông

\(\Rightarrow MDOP\) nội tiếp

\(\Rightarrow\widehat{FMN}=\widehat{FDP}\) (cùng chắn OP) (2)

(1);(2) \(\Rightarrow\widehat{FDP}=\widehat{FDN}\)

\(\Rightarrow DF\) là phân giác của \(\widehat{PDN}\)

c.

Do MN là đường kính và E thuộc đường tròn \(\Rightarrow\widehat{MEN}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{MEN}=90^0\Rightarrow NE\perp ME\)

Áp dụng hệ thức lượng trong tam giác vuông MNF với đường cao NE:

\(MN^2=ME.MF\Rightarrow\left(2R\right)^2=ME.MF\)

\(\Rightarrow ME.MF=4R^2\)

Từ đó áp dụng BĐT Cô-si ta có:

\(MF+2ME\ge2\sqrt{MF.2ME}=2\sqrt{8R^2}=4R\sqrt{2}\)

Dấu "=" xảy ra khi \(MF=2ME\Rightarrow E\) là trung điểm MF

\(\Rightarrow NE\) là trung tuyến ứng với cạnh huyền

\(\Rightarrow NE=\dfrac{1}{2}MF=ME\)

\(\Rightarrow E\) là điểm chính giữa cung MN

NV
12 tháng 1 2024

loading...

Câu 2: Cho biểu thức:1) Tìm điều kiện của x để biểu thức A có nghĩa .2) Rút gọn biểu thức A .3) Giải phương trình theo x khi A = -2 .Câu 3: Cho biểu thức:a) Với những giá trị nào của a thì A xác định.b) Rút gọn biểu thức A .c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .Câu 4:a) Rút gọn biểu thức:b) Chứng minh rằng 0 ≤ C < 1Câu 5: Cho biểu thứca) Rút gọn Q.b) Tính giá trị...
Đọc tiếp

Câu 2: Cho biểu thức:

1) Tìm điều kiện của x để biểu thức A có nghĩa .

2) Rút gọn biểu thức A .

3) Giải phương trình theo x khi A = -2 .

Câu 3: Cho biểu thức:

a) Với những giá trị nào của a thì A xác định.

b) Rút gọn biểu thức A .

c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .

Câu 4:

a) Rút gọn biểu thức:

b) Chứng minh rằng 0 ≤ C < 1

Câu 5: Cho biểu thức

a) Rút gọn Q.

b) Tính giá trị của Q khi a = 3 + 2√2.

c) Tìm các giá trị của Q sao cho Q < 0.

Câu 6: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tìm các giá trị của x để P = 6/5.

Câu 7: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tím các giá trị nguyên của x để P có giá trị nguyên.

Câu 8: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị nguyên của x để P có giá trị nguyên.

c) Tìm GTNN của P và giá trị tương ứng của x.

Câu 9: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị của x để P > 0.

c) Tính giá trị của P khi x = 7 - 4√3.

d) Tìm GTLN của P và giá trị tương ứng của x.

2
27 tháng 4 2018

sora béo chưa ghi biểu thức

27 tháng 4 2018

Biểu thức nào hả bn ?