Cho tam giác ABC cân tại A có AB=50cm, AC=60cm. Cac đường cao AD,CE cắt nhau tại H. Tính CH
( ghi dùm lời giải đầy đủ k cần vẽ hình)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm BC suy ra BH = CH = 30cm
Do tam giác ABC cân tại A nên dễ dàng chứng minh được tam giác BEC = tam giác CDB (cgc)
=> BE = CD
mà AB = AC
nên AE = AD tức là tam giác AED cân tại A
Lại có: áp dụng định lý Pitago vào tam giác vuông AHC
ta tính được AH = 40cm
do đó diện tích tam giác ABC = S(ABC) = 1/2 . AH. BC = 1200
mà S(ABC) = 1/2 . BD. AC suy ra BD = 48cm
Áp dụng Pitago vào tam giác vuông ABD
tính được AD = 14cm
Mặt khác, do AD = AE và AB = AC
nên DE // BC
áp dụng định lý Ta-lét ta được: AD/AC = DE/BC
suy ra DE = 288/5
a) \(\Delta ABC\) cân nên đường cao AD cũng là trung tuyến => BD = DC = 30 cm
Áp dụng Pitago trong tam giác vuông ADB ta tính được AD = 40 cm
Ta giác vuông ABD ~ CHD (g.g)
=> \(\frac{AB}{CH}=\frac{AD}{CD}\) hay CH = \(\frac{AB.CD}{AD}=\frac{150}{4}\) cm
Xét \(\Delta ABD\) và \(\Delta CHD\) có :
\(\widehat{ADB}=\widehat{HDC}=90^o;\widehat{BAD}=\widehat{HCD}\) (cùng phụ với \(\widehat{ABD}\))
\(\Rightarrow\) \(\Delta ABD\) = \(\Delta CHD\)
a: Ta có: ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm củabC
=>BD=CD=30cm
AD=40cm
Xét ΔADC vuông tại D và ΔBEC vuông tại E có
góc C chung
Do đó: ΔADC đồng dạng với ΔBEC
Suy ra: DC/EC=AC/BC=AD/BE
=>30/EC=50/60=40/BE
=>30/EC=40/BE=5/6
=>EC=36cm; BE=48cm
b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc HBD chung
Do đó: ΔBDH đồng dạg với ΔBEC
Suy ra: BH/BC=BD/BE
=>BH/60=30/48=5/8
hay BH=37,5(cm)
=>CH=37,5cm
a: Xét ΔABC có
AD,BE là đường cao
AD cắt EB tại H
=>H là trực tâm
=>CH vuông góc AB
b: ΔABC cân tại A
mà AD là trung tuyến
nên AD vuông góc BC
Xét tứ giác AKBD có
góc AKB=góc ADB=góc KBD=90 độ
=>AKBD là hình chữ nhật
=>góc KAD=90 độ
Mình không biết vẽ hình, sorry.
a) Xét tam giác ABD và tam giác ACD có :
AB=AC (GT)
góc BAD= góc CAD (GT)
AD là cạnh chung
=> tam giác ABD = tam giác ACD (c.g.c)
b) Ta có: tam giác ABD= tam giác ACD (chứng minh trên)=> góc B= góc C (2 góc tương ứng ).
a: Xét ΔABH vuông tại H có HF là đường cao ứng với cạnh huyền AB
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Đề sai nhé bạn nếu mà cho tam giác ABC cân tại A thì sẽ có AB=AC=50cm hoặc AB=AC=60 cm ko thể là AB=50 AC=60 nhé bạn :)
Mik viết sai đề nha bạn . đề là :Cho tam giác ABC cân tại A có AB=50cm, BC=60cm. Cac đường cao AD,CE cắt nhau tại H. Tính Ch