P=(x+y)^2+(y+t)^2+(t+x)^2.
Q=(x+y)(y+t)+(y+t)(t+x)+(t+x)(x+y).
C/m Nếu P=Q thì x=y=t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gợi ý nè .
1) áp dụng bunya
2)thử nhân Pt 2 với 5 rồi trừ đi thử
3) đặt x3=a,y2=b
=> a2+3a+1=b2
đến đây có thể xét delta hoặc...
a2<a2+3a+1<a2+4a+4
=> a2<b2<(a+2)2
x,y nguyên nên a,b nguyên => b2=(a+1)2<=> a2+3a+1=a2+2a+1
<=> a=0 => b=1 => x=0 ,y=1
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)
*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)
\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)
*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)
a)
Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)
Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Thế (1) vào biểu thức B
\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)
\(\Rightarrow B=2.2.2=8\)
Vậy biểu thức \(B=8\)
Bài 1:
Vì \(x^2+y^2=1999\) là một số lẻ nên $x,y$ khác tính chẵn lẻ. Không mất tổng quát giả sử \(x\) chẵn $y$ lẻ
Đặt \(x=2m, y=2n+1\)
\(\Rightarrow 1999=x^2+y^2=4m^2+(2n+1)^2\)
\(\Leftrightarrow 1999=4m^2+4n^2+4n+1\)
\(\Leftrightarrow 4(m^2+n^2+n)=1998\)
Ta thấy vế trái là một biểu thức chia hết cho $4$, vế phải không chia hết cho $4$ nên pt không tồn tại $m,n$ thỏa mãn.
Tức là phương trình đã cho vô nghiệm.
Bài 2:
Ta có: \(9x^2+2=y^2+y\)
\(\Leftrightarrow 9x^2=y^2+y-2\)
\(\Leftrightarrow (3x)^2=(y-1)(y+2)\)
Ta có: \((y-1)(y+2)\geq 0\Leftrightarrow \left[\begin{matrix} y\geq 1\\ y\leq -2\end{matrix}\right.\)
TH1 \(y\geq 1\), đảm bảo \(y-1,y+2\in\mathbb{N}\)
Gọi \(d=\text{ƯCLN}(y-1,y+2)\) \(\Rightarrow \left\{\begin{matrix} y-1\vdots d\\ y+2\vdots d\end{matrix}\right.\Rightarrow (y+2)-(y-1)\vdots d\)
\(\Leftrightarrow 3\vdots d\) \(\Leftrightarrow d\in\left\{1;3\right\}\)
Nếu \(d=1\), tức là không số nào trong \(y-1,y+2\) chia hết cho $3$. Mà \((3x)^2\vdots 3\) nên vô lý (loại )
Nếu \(d=3\). Đặt \(y-1=3k\Rightarrow y+2=3k+3\)
PT trở thành: \((3x)^2=3k(3k+1)=9k(k+1)\)
\(\Leftrightarrow x^2=k(k+1)\)
Vì $k,k+1$ nguyên tố cùng nhau mà tích của chúng lại là một số chính phương nên bản thân chúng cũng là số chính phương.
Đặt \(k=m^2; k+1=n^2\)( \(m,n\in\mathbb{N}\) )
\(\Rightarrow n^2-m^2=1\Leftrightarrow (n-m)(n+m)=1\). Đây là dạng pt tích cơ bản ta thu được \(n=1; m=0\Rightarrow k=0\)
\(\Rightarrow \left\{\begin{matrix} y=1\\ x=0\end{matrix}\right.\)
TH2: \(y\leq -2\) thì \(y-1, y+2\leq 0\).
Đặt \(y+2=-(a-1)\Rightarrow y-1=-(a+2)\)
Khi đó: \((3x)^2=(a-1)(a+2)\) với \(a-1,a+2\geq 0\) (là các số tự nhiên)
TH này lặp lại TH1 và ta thu được \(a=1\Leftrightarrow y=-2; x=0\)
Vậy \((x,y)=(0; 1); (0; -2)\)
a/ ĐKXĐ: \(x>0\)
\(y=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{\sqrt{x}\left[\left(\sqrt{x}\right)^3+1\right]}{x-\sqrt{x}+1}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1=x-\sqrt{x}\)
Ta có: \(y=2\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=1\end{matrix}\right.\)
Vậy ...............
b/ Ta có: \(x>1\Rightarrow\sqrt{x}>1\Rightarrow\sqrt{x}-1>0\) và \(\sqrt{x}>0\)
nên \(y=\sqrt{x}\left(\sqrt{x}-1\right)>0\). Khi đó \(\left|y\right|=y\)
\(\Rightarrow y-\left|y\right|=y-y=0\) (ĐPCM)
c/ \(y=x-\sqrt{x}=\left(\sqrt{x}\right)^2-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
Vậy \(Min_y=-\frac{1}{4}\Leftrightarrow x=\frac{1}{4}\)
Ta có :
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
\(\Leftrightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)
\(\Leftrightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)
+) Nếu \(x+y+z+t\ne0\)
\(\Leftrightarrow y+z+t=z+t+x=t+x+y=x+y+z\)
\(\Leftrightarrow x=y=z=t\ne0\)
Mà \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
\(\Leftrightarrow P=\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)
\(\Leftrightarrow P=\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}\)
\(\Leftrightarrow P=4\)
+) Nếu \(x+y+z+t=0\)
\(\Leftrightarrow x+y=-\left(z+t\right)\)
\(\Leftrightarrow\dfrac{x+y}{z+t}=\dfrac{-\left(z+t\right)}{z+t}=-1\)
Tương tự ta có :
\(\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}=-1\)
\(\Leftrightarrow P=-4\)
Vậy ..
+) Có: \(x:y:z:t=2:3:4:5\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=\left(-3\right)\cdot2=-6\\\frac{y}{3}=-3\Rightarrow y=\left(-3\right)\cdot3=-9\\\frac{z}{4}=-3\Rightarrow z=\left(-3\right)\cdot4=-12\\\frac{t}{5}=-3\Rightarrow t=\left(-3\right)\cdot5=-15\end{matrix}\right.\)
Vậy \(x=-6;y=-9;z=-12;t=-15\)
+) Gọi giá trị chung của tỉ lệ thức là k, ta có:
\(\frac{x}{4}=\frac{y}{7}=k\\ \Rightarrow x=4k;y=7k\)
Lại có: \(x\cdot y=112\)
\(\Rightarrow4k\cdot7k=112\\ 28k^2=112\\ \Rightarrow k^2=4\\ \Rightarrow k=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot\left(\pm2\right)=\pm8\\y=7k=7\cdot\left(\pm2\right)=\pm14\end{matrix}\right.\)
Vậy \(x=\pm8;y=\pm14\)
+) Gọi giá trị chung của tỉ lệ thức là h, ta có:
\(\frac{x}{3}=\frac{y}{4}=h\\ \Rightarrow x=3h;y=4h\)
Lại có: \(x\cdot y=48\)
\(\Rightarrow3h\cdot4h=48\\ 12h^2=48\\ \Rightarrow h^2=4\\ \Rightarrow h=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=3h=3\cdot\left(\pm2\right)=\pm6\\y=4h=4\cdot\left(\pm2\right)=\pm8\end{matrix}\right.\)
Vậy \(x=\pm6;y=\pm8\)
+) Gọi giá trị chung của tỉ lệ thức là g, ta có:
\(\frac{x}{2}=\frac{y}{-3}=g\\ \Rightarrow x=2g;y=-3g\)
Mà \(xy=-54\)
\(\Rightarrow2g\cdot\left(-3g\right)=-54\\ -6g^2=-54\\ g^2=9\\ \Rightarrow g=\pm3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2g=2\cdot\left(\pm3\right)=\pm6\\y=-3g=\left(-3\right)\cdot\left(\pm3\right)=\pm9\end{matrix}\right.\)
Vậy \(x=\pm6;y=\pm9\)
+) \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\\left|y^2-9\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\pm3\end{matrix}\right.\)
Vậy \(x=2;y=\pm3\)
+) \(-0,16:x=-x:25\)
\(-0,16\cdot25=-x\cdot x\\ -x^2=-4\\ \Rightarrow x^2=4\\ \Rightarrow x=\pm2\)
Vậy \(x=\pm2\)
Đặt a=x+y ; b=y+t ; c=t+x
Khi P=Q tức là: a2+b2+c2=ab+bc+ac
<=> 2(a2+b2+c2)=2(ab+bc+ac)
<=> 2a2+2b2+2c2=2ab+2bc+2ac
<=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2) = 0
<=> (a-b)2+(b-c)2+(c-a)2 = 0
Dấu "=" xảy ra <=> a=b=c (đpcm)
Vậy .....