(x+y)(x^2-y^2)+(y+z)(y^2-z^2)+(z+x)(z^2+x^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)
\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)
x(x+y+z) + y(x+y+z) + z(x+y+z) = 2 + 25 - 2 = 25
=> ( x+ y+ z )(x+y+z) = 25
=> x + y+ z = 5 hoặc x + y +z = -5
(+) x + y +z = 5 => x.5 = 2 => x = 2/5
=> y.5=5 => y = 1
=> z.5 = -2 => z = -2/5
(+) x+ y+ z = -5 => -5x = 2 => x= -2/5 (loại x > 0)
Vậy x = 2/5 ; y = 1 ; z = -2/5