Chứng minh a) n : 11 dư 4 thì n2 chia hết 11 dư 5 ( n thuộc N )
b) n : 13 dư 7 thì n2 - 10 chia hết 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
Câu 1:
Ta có:
\(n=11k+4\)
\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)
Vì \(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên
\(121k^2+88k+16\) chia cho 11 dư 5
Do đó \(n^2\) chia cho 11 dư 5.
Câu 2:
Ta có:
\(n=13k+7\)
\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)
\(=169k^2+182k+49-10=169k^2+182k+39\)
Vì \(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.
Do đó \(n^2-10\) chia hết cho 13.
Chúc bạn học tốt!!!
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
- Bài 1:
a)\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)\)
\(=7^4.55=7^4.5.11⋮11\)
b)\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{26}.5\)
\(=3^{24}.3^2.5=3^{24}.45⋮45\)
c) \(10^9+10^8+10^7=10^7\left(10^2+10+1\right)\)
\(=10^7.111=10^6.10.111\)
\(=10^6.1110=10^6.2.555⋮555\)
- Bài 5:
a) \(5^{28}=\left(5^2\right)^{14}=25^{14}\)
Vì \(25^{14}< 26^{14}\) => \(5^{28}< 26^{14}\)
Gọi thương của phép chia n cho 11 là x
thì n=11x+4
\(\Leftrightarrow n^2=\left(11x+4\right)^2\)
\(\Leftrightarrow n^2=121x^2+88x+16\)
=> n2 :11 <=>\(121x^2+88x+16:11\)
\(\Leftrightarrow11\left(11x^2+8x+1\right)+5\)
vậy n2 :11 dư 5
b, bạn làm tương tự nhé rồi đặt 13 làm nhân tử chung thì sẽ chia hết cho 13
Tính
\(\left(0,3x^2y-\frac{16}{3}z\right)^2\)
b) \(\left[\left(2u+5\right)-3z\right]^2\)