K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

Gọi thương của phép chia n cho 11 là x 

thì n=11x+4

\(\Leftrightarrow n^2=\left(11x+4\right)^2\)

\(\Leftrightarrow n^2=121x^2+88x+16\)

=> n2 :11   <=>\(121x^2+88x+16:11\)

                     \(\Leftrightarrow11\left(11x^2+8x+1\right)+5\)

vậy n:11 dư 5

b, bạn làm tương tự nhé rồi đặt 13 làm nhân tử chung thì sẽ chia hết cho 13 

3 tháng 7 2018

Tính
\(\left(0,3x^2y-\frac{16}{3}z\right)^2\) 
b) \(\left[\left(2u+5\right)-3z\right]^2\)

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

28 tháng 7 2017

Câu 1:

Ta có:

\(n=11k+4\)

\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)

\(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên

\(121k^2+88k+16\) chia cho 11 dư 5

Do đó \(n^2\) chia cho 11 dư 5.

Câu 2:

Ta có:

\(n=13k+7\)

\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)

\(=169k^2+182k+49-10=169k^2+182k+39\)

\(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.

Do đó \(n^2-10\) chia hết cho 13.

Chúc bạn học tốt!!!

28 tháng 7 2017

thanks bạn nha!!! Chúc bạn học tốt nha!!!

11 tháng 10 2015

Ta có :

A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155

8 tháng 9 2015

n chia 11 dư 4 nên n đồng dư với 4 

                            n2 đồng dư với 42

 

4 tháng 8 2017
  • Bài 1: 

a)\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)\) 

                                 \(=7^4.55=7^4.5.11⋮11\)

b)\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}\)

                                          \(=3^{26}\left(3^2-3-1\right)=3^{26}.5\) 

                                          \(=3^{24}.3^2.5=3^{24}.45⋮45\)

c) \(10^9+10^8+10^7=10^7\left(10^2+10+1\right)\)

                                           \(=10^7.111=10^6.10.111\)

                                           \(=10^6.1110=10^6.2.555⋮555\)

  • Bài 5: 

 a) \(5^{28}=\left(5^2\right)^{14}=25^{14}\)

Vì \(25^{14}< 26^{14}\) => \(5^{28}< 26^{14}\)