Tìm các số thực u,v biết a^3+b^3=7 và u.v=-2
Các thiên tài hãy giải đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì u+v=29 và uv=198 nên u,v là hai nghiệm của phương trình:
\(x^2-29x+198=0\)
\(\Leftrightarrow x^2-18x-11x+198=0\)
\(\Leftrightarrow x\left(x-18\right)-11\left(x-18\right)=0\)
\(\Leftrightarrow\left(x-18\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-18=0\\x-11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\\x=11\end{matrix}\right.\)
Vậy: u=18; v=11
a) Vì \(u+v=3\sqrt{2}\) và uv=4
nên u,v là hai nghiệm của phương trình: \(x^2-3\sqrt{2}x+4=0\)
\(\Delta=\left(-3\sqrt{2}\right)^2-4\cdot1\cdot4=18-16=2>0\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3\sqrt{2}-\sqrt{2}}{2}=\sqrt{2}\\x_2=\dfrac{3\sqrt{2}+\sqrt{2}}{2}=2\sqrt{2}\end{matrix}\right.\)
Vậy: \(u=\sqrt{2};v=2\sqrt{2}\)
a) u, v là nghiệm phương trình:
X^2 - 15 X + 36 = 0
\(\Delta=15^2-4.36=81\)
=> \(\orbr{\begin{cases}X=\frac{-\left(-15\right)+\sqrt{81}}{2}=12\\X=\frac{-\left(-15\right)-\sqrt{81}}{2}=3\end{cases}}\)
Vậy (u; v) = ( 12; 3 ) hoặc (u; v ) = (3; 12)
b) và c ) tương tự
d) \(u^2+v^2=\left(u+v\right)^2-2uv=13\)
=> \(\left(u+v\right)^2=25\)
=> u + v = 5 hoặc u + v = - 25
Có 2 TH:
TH1: u + v = 5 và uv= 6
TH2: u + v = -5 và uv = 6
Làm tương tự như câu a.
Gọi số cần tìm là a Ta có:
a x 3 - 12 = a : 3 + 12
a x 3 - a x 1/3 = 24
a x 8/3 = 24
a = 24 : 8/3
a = 9
ĐS: a = 9
Gọi số cần tìm là a Ta có:
a x 3 - 12 = a : 3 + 12
a x 3 - a x 1/3 = 24
a x 8/3 = 24
a = 24 : 8/3
a = 9
ĐS: a = 9
Đáp án B
Ta có: u.v =11 nên u.(-v) = -11 (1)
Từ u – v = 10 nên u + (- v) = 10 (2)
Khi đó; u và (-v) là nghiệm phương trình:
x 2 - 10 x - 11 = 0 (*)
Do a - b + c = 1 -(-10 ) + (-11) = 0 nên phương trình (*) có 2 nghiệm là:
x 1 = -1 và x 2 = 11
* Trường hợp 1: Nếu u = -1 và –v = 11
=> v = -11 nên u + v = -12
* Trường hợp 2: nếu u = 11 và –v = -1 thì v = 1
Suy ra: u + v = 12
Trong cả 2 trường hợp ta có: |u + v| = 12
Ta có: \(u^3+y^3=7\) (1)
Và \(u^3.v^3=-8\) (2)
Từ \(u^3+v^3=7\Rightarrow u^3=7-v^3\)
Thế vào (2) ta được: \(\left(7-v^3\right).v^3=-8\Leftrightarrow7v^3-v^6+8=0\)
Đặt v3 = x vào phương trình, Ta có: \(x^2-7x-8=0\Leftrightarrow x^2-1-7x-7=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-7\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=8\end{cases}}}\)
Do đó: (u3=-1; v3=8) hoặc (u3=8;v3=-1)
Vậy (u=-1;v=2) hoặc (u=2;v=-1)
u =1 thì v =2
u = -1 thì v = -2
còn vế kia chả liên quan gì đâu bạn