K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

Bạn ơi, có gì đó sai!!!

NV
13 tháng 8 2021

ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Ta có:

\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Dấu "=" xảy ra khi và chỉ khi:

\(\sqrt{x+1}-3\ge0\Rightarrow x\ge8\)

Vậy nghiệm của pt là \(x\ge8\)

NV
15 tháng 3 2022

ĐKXĐ: \(x\ge1\)

Do \(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}=\sqrt{x^2-x^2+1}=1\)

Đặt \(\sqrt{x-\sqrt{x^2-1}}=t\Rightarrow\sqrt{x+\sqrt{x^2-1}}=\dfrac{1}{t}\)

Phương trình trở thành:

\(t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\Rightarrow t=1\)

\(\Rightarrow\sqrt{x-\sqrt{x^2-1}}=1\Leftrightarrow x-\sqrt{x^2-1}=1\)

\(\Leftrightarrow x-1=\sqrt{x^2-1}\)

\(\Rightarrow x^2-2x+1=x^2-1\)

\(\Rightarrow x=1\) (thỏa mãn)

6 tháng 9 2021

\(\sqrt{x+2\sqrt{x}+1}-\sqrt{x-2\sqrt{x}+1}=2\left(x\ge0\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}-\sqrt{\left(\sqrt{x}-1\right)^2}=2\\ \Leftrightarrow\sqrt{x}+1-\left|\sqrt{x}-1\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1-\left(\sqrt{x}-1\right)=2,\forall\sqrt{x}-1\ge0\\\sqrt{x}+1-\left(1-\sqrt{x}\right)=2,\forall\sqrt{x}-1< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0\sqrt{x}=0,\forall x\ge1\\\sqrt{x}=1,\forall x< 1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\in R,x\ge1\\x=1,x< 1\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow x\in R,x\ge1\)

16 tháng 12 2020

ĐKXĐ: \(x\ge1\)

Ta có:

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+\left|\sqrt{x-1}-1\right|=\dfrac{x+1}{2}\left(1\right)\)

Ta xét 2 trường hợp sau:

TH1: \(x\ge2\)

Khi đó:

\(\left(1\right)\Leftrightarrow2\sqrt{x-1}-1=\dfrac{x+1}{2}\\ \Leftrightarrow2\sqrt{x-1}=\dfrac{x+3}{2}\\ \Leftrightarrow16\left(x-1\right)=x^2+6x+9\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TMĐK\right)\)

TH2: \(1\le x< 2\)

Khi đó:

\(\left(1\right)\Leftrightarrow1=\dfrac{x+1}{2}\Leftrightarrow x=1\left(TMĐK\right)\)

Vậy x=1 hoặc x=5

ĐKXĐ: x>=1

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{1}{2}\left(x+3\right)\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=\dfrac{1}{2}\left(x+3\right)\)

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{1}{2}\left(x+3\right)\)

=>\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{1}{2}\left(x+3\right)\)

TH1: \(x>=2\)

PT sẽ tương đương với \(\sqrt{x-1}+1+\sqrt{x-1}-1=\dfrac{1}{2}\left(x+3\right)\)

=>\(2\sqrt{x-1}=\dfrac{1}{2}\left(x+3\right)\)

=>\(4\sqrt{x-1}=x+3\)

=>\(\sqrt{16x-16}=x+3\)

=>x>=-3 và (x+3)^2=16x-16

=>x>=-3 và x^2+6x+9-16x+16=0

=>x>=-3 và x^2-7x+25=0

=>Loại

TH2: 1<=x<2

PT sẽ là \(\sqrt{x-1}+1+1-\sqrt{x-1}=\dfrac{1}{2}\left(x+3\right)\)

=>1/2(x+3)=2

=>x+3=4

=>x=1(nhận)

15 tháng 7 2021

`\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-1}(x>=1)`

`<=>\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\sqrt{x-1}`

`<=>\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=2\sqrt{x-1}`

`<=>|\sqrt{x-1}+1|+|\sqrt{x-1}-1|=2\sqrt{x-1}`

`<=>\sqrt{x-1}+1+|\sqrt{x-1}-1|=2\sqrt{x-1}`

`<=>|\sqrt{x-1}-1|=\sqrt{x-1}-1`

`<=>\sqrt{x-1}-1>=0``

`<=>sqrt{x-1}>=1`

`<=>x-1>=1`

`<=>x>=2`

Vậy `S={x|x>=2}`

24 tháng 12 2020

ĐKXĐ \(x\ge1\)

\(P=\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}+\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{2\sqrt{x}+2}{x-1}\)

\(P=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-2\sqrt{x}-2}{x-1}\)

\(P=\dfrac{2x-2\sqrt{x}}{x-1}\)

\(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

Giải phương trình ???

 

24 tháng 12 2020

x > 1 

.-.

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Đặt căn x=a; căn 1-x=b

Theo đề, ta có: a+b=1+2/3ab

=>3a+3b=3+2ab

=>3a+3b-2ab=3

=>a(3-2b)+3b-4,5=-1,5

=>-a(2b-3)+3(b-1,5)=-1,5

=>-2a(b-1,5)+3(b-1,5)=-1,5

=>(-2a+3)(b-1,5)=-1,5

=>(2a-3)(b-1,5)=1,5

=>(2a-3)(2b-3)=3

=>(2a-3;2b-3) thuộc {(1;3); (3;1);(-1;-3); (-3;-1)}

=>(a,b) thuộc {(2;3); (3;2); (1;0); (0;1)}

TH1: a=2; b=3

=>căn x=2 và căn 1-x=3

=>x=4 và 1-x=9

=>Loại

TH2: a=3 và b=2

=>căn x=3 và căn 1-x=2

=>x=9 và 1-x=4(loại)

TH3: a=1 và b=0

=>x=1 và 1-x=0

=>x=1

TH4: a=0 và b=1

=>x=0 và 1-x=1

=>x=0

NV
13 tháng 12 2021

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{\left(x-1\right)\left(x+1\right)}=x\sqrt{x}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}+1\right)=x\sqrt{x}\)

\(\Leftrightarrow\dfrac{\sqrt{x-1}.x}{\sqrt{x+1}-1}=x\sqrt{x}\)

\(\Leftrightarrow\dfrac{\sqrt{x-1}}{\sqrt{x+1}-1}=\sqrt{x}\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{x^2+x}-\sqrt{x}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x}=\sqrt{x^2+x}\)

\(\Leftrightarrow2x-1+2\sqrt{x^2-x}=x^2+x\)

\(\Leftrightarrow x^2-x-2\sqrt{x^2-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Leftrightarrow x^2-x-1=0\)