K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

                                    \(x^4+2x^3+2x^2+2x+1=0\)

\(\Leftrightarrow\)                  \(x^4+x^3+x^3+2x^2+2x+1=0\)

\(\Leftrightarrow\) \(x^3\left(x+1\right)+2x\left(x+1\right)+\left(x^3+1\right)=0\)

\(\Leftrightarrow\) \(x^3\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\) \(\left(x+1\right)\left(x^3+2x+x^2-x+1\right)=0\)

\(\Leftrightarrow\) \(\left(x+1\right)\left[x^2\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\) \(\left(x+1\right)\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\) \(\left(x+1\right)^2\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+1\right)^2=0\\x^2+1=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\x^2=-1\rightarrow kotm\end{cases}}\)

Vậy.....................................................

23 tháng 6 2018

\(x^4+x^3+x^3+x^2+x^2+x+x+1=0\)

\(x^3(x+1)+x^2(x+1)+x(x+1)=0\)

\((x+1)(x^3+x^2+x+1)=0\)

\((x+1)[x^2(x+1)+(x+1)]=0\)

\((x+1)^2(x^2+1)=0\)

\(\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\sqrt{-1}\left(loai\right)\end{cases}}\)

vay \(x=-1\)

NẾU CÓ SAI BN THÔNG CẢM

a: Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\cdot\left(x+1\right)\)

b: Ta có: \(-a^4+a^3+2a^3+2a^2\)

\(=-a^2\left(a^2-a-2a-2\right)\)

c: Ta có: \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^3+x^2+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^2+1\right)\)

15 tháng 12 2021

\(a,=\left(2x^3-x^2+x+4x^2-2x+2-x+1\right):\left(2x^2-x+1\right)\\ =\left[x\left(2x^2-x+1\right)+2\left(2x^2-x+1\right)-x+1\right]:\left(2x^2-x+1\right)\\ =x+2\left(\text{dư }-x+1\right)\\ b,=\left[x^2\left(2x-5\right)+3\left(2x-5\right)\right]:\left(2x-5\right)\\ =x^2+3\)

29 tháng 10 2021

\(2x^3+5x^2-2x+a=x\left(2x^2-x+1\right)+3\left(2x^2-x+1\right)-3+a\)

\(=\left(2x^2-x+1\right)\left(x+3\right)-3+a⋮\left(2x^2-x+1\right)\)

\(\Rightarrow-3+a=0\Rightarrow a=3\)

29 tháng 10 2021

\(2x^3+5x^2-2x+a⋮2x^2-x+1\)

\(\Leftrightarrow2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)

\(\Leftrightarrow a-3=0\)

hay a=3

a: \(=2x^3-14x^2-6x\)

c: \(=-10x^5-15x^4+25x^3\)

9 tháng 12 2021

a) 2x. (x2 – 7x -3)

= 2x3- 14x2- 6x

b) ( -2x3 + y2 -7xy). 4xy2 

= -8x4y2+ 4xy4- 28x2y3

c)(-5x3).(2x2+3x-5)

= -10x5-15x4+25x3

d) (2x2 - xy+ y2).(-3x3)

=-6x5+ 3x4y -3x3y2

e)(x2 -2x+3). (x-4) 

=x3-2x2+3x -4x2+8x-12

=x3-6x2+11x-12

f) ( 2x3 -3x -1). (5x+2)

=10x4-15x2-5x +4x3-6x-2

=10x4+4x3-15x2-11x-2

 

18 tháng 8 2023

\(x^6+2x^3+1=0\)

\(\Leftrightarrow\left(x^3\right)^2+2x^3+1=0\)

\(\Leftrightarrow\left(x^3+1\right)^2=0\)

\(\Leftrightarrow x^3=\left(-1\right)^3\)

\(\Leftrightarrow x=-1\)

___________

\(x\left(x-5\right)=4x-20\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

_____________

\(x^4-2x^2=8-4x^2\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(4x^2-8\right)=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

_______________

\(\left(x^3-x^2\right)-4x^2+8x-4\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

a: \(=6x^3-10x^2+6x\)

b: \(=-2x^4-10x^3+6x^2\)

c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)

d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)

8 tháng 1 2018

\(x^4+2x^3-2x^2+2x-3=0\\ \Leftrightarrow x^4+3x^3-x^3-3x^2+x^2+3x-x-3=0\\ \Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)+x\left(x+3\right)-\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^3-x^2+x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left[x^2\left(x-1\right)+\left(x-1\right)\right]=0\\ \Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\left(\text{vì }x^2+1\ge1>0\right)\)

Vậy ...

\(\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[\left(x^2+5x-2\right)-\left(x^2+x+1\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy ...

\(x^2+\left(x+2\right)\left(11x-7\right)=4\\ \Leftrightarrow x^2-4+\left(x+2\right)\left(11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-2\right)+\left(11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-2+11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\\ \Leftrightarrow3\left(x+2\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\4x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy ...

27 tháng 2 2018

nghiệm đâu bạn ưi...nó là phương trình vô nghiệm hay vô số nghiệm vậy m :))

Bài 3: 

\(\Leftrightarrow x^3+64-x^3+25x=264\)

hay x=8

9 tháng 11 2021

\(1,C=6x^2+23x-55-6x^2-23x-21=-76\\ 2,=\left(2x^4-x^2+2x^3-x-6x^2+6-3\right):\left(2x^2-1\right)\\ =\left[\left(2x^2-1\right)\left(x^2+x-6\right)-3\right]:\left(2x^2-1\right)\\ =x^2+x-6\left(dư.-3\right)\\ 3,\Leftrightarrow x^3+64-x^3+25x=264\\ \Leftrightarrow25x=200\Leftrightarrow x=8\)

20 tháng 12 2021

\(a,=2x^3-14x^2-6x\\ b,=-8x^4y^2+4xy^4-28x^2y^3\\ c,=-10x^5-15x^4+25x^3\\ d,=x^3-4x^2-2x^2+8x+3x-12=x^3-6x^2+11x-12\\ e,=10x^4+4x^3-15x^2-6x-5x-2=10x^4+4x^3-15x^2-11x-2\\ g,=6x-3-5x+15=x+12\)