Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tạm thời phân tích như sau:
i) x4 - 2x3 + 2x - 1
= (x4 - 1) - (2x3 - 2x)
= (x2 + 1).(x2 -1) - 2x.(x2 - 1)
= (x2 - 1).(x2 - 2x + 1)
j) a6 - a4 + 2a3 + 2a2
= (a3 + a2).(a3 - a2) + 2.(a3 + a2)
= (a3 + a2).(a3 - a2 +2)
k) x4 - x3 + 2x2 + x + 1 (tạm thời giải thế này)
= x3.(x - 1) + (2x + 3 - \(\frac{4}{x-1}\)).(x -1)
= (x - 1).(x3 + 2x + 3 - \(\frac{4}{x-1}\))
Nếu đề là:
x4 + x3 + 2x2 + x + 1
= x4 + x2 + x3 + x + x2 + 1
= x2.(x2 + 1) + x.(x2 + 1) + x2 + 1
= (x2 + 1).(x2 + x + 1)
m) x2y + xy2 + x2z + y2z + 2xyz
= xy.(x + y) + z.(x2 + 2xy + y2)
= xy.(x + y) + z.(x + y).(x + y)
= (x + y).(xy + xz + yz)
n) x5 + x4 + x3 + x2 + x + 1
= x4.(x + 1) + x2.(x + 1) + x + 1
= (x + 1).(x4 + x2 + 1)
\(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)^2\)
\(=\left(x-1\right)^3\left(x+1\right)\)
a: \(=4x^2+20x+25+4x^2-20x+25-\left(4x^2-1\right)\)
\(=8x^2+50-4x^2+1=4x^2+51\)
b: \(=8a^3+12a^2b+6ab^2+b^3+8a^3-12a^2b+6ab^2-b^3-16a^3\)
\(=12ab^2\)
c: \(\left(2x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)-7x^3-2x\)
\(=\left(2x-1\right)^3-x^3+8-7x^3-2x\)
\(=8x^3-12x^2+6x-1-8x^3-2x+8\)
\(=-12x^2+4x+7\)
d: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3x^2+3\)
\(=-3x^2+4x+3\)
GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI
a) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(24+x^3\right)\)
\(=x^3+2^3-24-x^3\)
\(=\left(x^3-x^3\right)+\left(8-24\right)\)
\(=-16\)
phần c hình như sai đầu bài !
1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)
3) Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)
Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)
a: Ta có: \(x^4-2x^3+2x-1\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)
\(=\left(x-1\right)^3\cdot\left(x+1\right)\)
b: Ta có: \(-a^4+a^3+2a^3+2a^2\)
\(=-a^2\left(a^2-a-2a-2\right)\)
c: Ta có: \(x^4+x^3+2x^2+x+1\)
\(=x^4+x^3+x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^2+1\right)\)