K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\cdot\left(x+1\right)\)

b: Ta có: \(-a^4+a^3+2a^3+2a^2\)

\(=-a^2\left(a^2-a-2a-2\right)\)

c: Ta có: \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^3+x^2+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^2+1\right)\)

8 tháng 9 2017

Tạm thời phân tích như sau:

i) x- 2x+ 2x - 1

= (x- 1) - (2x- 2x)

= (x2 + 1).(x-1) - 2x.(x- 1)

= (x- 1).(x- 2x + 1)

j) a- a+ 2a+ 2a2 

= (a+ a2).(a- a2) + 2.(a+ a2)

= (a+ a2).(a- a+2)

k) x- x+ 2x+ x + 1 (tạm thời giải thế này)

= x3.(x - 1) + (2x + 3 - \(\frac{4}{x-1}\)).(x -1)

= (x - 1).(x+ 2x + 3 - \(\frac{4}{x-1}\))

Nếu đề là:

     x4 + x+ 2x+ x + 1

= x+ x+ x+ x + x+ 1

= x2.(x+ 1) + x.(x+ 1) + x+ 1

= (x+ 1).(x+ x + 1)

m) x2y + xy+ x2z + y2z + 2xyz

= xy.(x + y) + z.(x2 + 2xy + y2)

= xy.(x + y) + z.(x + y).(x + y)

= (x + y).(xy + xz + yz)

n) x+ x4 + x3 + x2 + x + 1

= x4.(x + 1) + x2.(x + 1) + x + 1

= (x + 1).(x4 + x2 + 1)

30 tháng 9 2018

\(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)^2\)

\(=\left(x-1\right)^3\left(x+1\right)\)

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

a: \(=4x^2+20x+25+4x^2-20x+25-\left(4x^2-1\right)\)

\(=8x^2+50-4x^2+1=4x^2+51\)

b: \(=8a^3+12a^2b+6ab^2+b^3+8a^3-12a^2b+6ab^2-b^3-16a^3\)

\(=12ab^2\)

c: \(\left(2x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)-7x^3-2x\)

\(=\left(2x-1\right)^3-x^3+8-7x^3-2x\)

\(=8x^3-12x^2+6x-1-8x^3-2x+8\)

\(=-12x^2+4x+7\)

d: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+3\)

\(=-3x^2+4x+3\)

28 tháng 7 2019

GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI

28 tháng 7 2019

GIÚP VỚI

21 tháng 6 2017

a) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(24+x^3\right)\)

\(=x^3+2^3-24-x^3\)

\(=\left(x^3-x^3\right)+\left(8-24\right)\)

\(=-16\)

phần c hình như sai đầu bài !

11 tháng 7 2016

1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)

3)  Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)

Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)

15 tháng 3 2020

a.=x2+1

b.=2x2+x+1

c.=(x-y-z)2

d.=2x-2

e.=x+3

27 tháng 3 2020

bạn tự trả lời đổi ticck à

22 tháng 8 2020

a, \(\left(x-y+1\right)\left(x+y+1\right)=x^2+xy+x-xy-y^2-y+x+y+1\)

\(=x^2+2x-y^2+1\)

b, \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)=4x^2+12x+9+4x^2-12x+9-8x^2+18\)

\(=36\)