K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2018

ta có : a = 1 + 2 + 2^2 + ... + 2^2002

=> 2a = 2 + 2^2 + 2^3 + ... + 2^2003

=> 2a-a = (2+2^2 + 2^3 + ... + 2^2003) - ( 1+2+2^2+...+2^2002)

=> a = 2^2003 - 1

Vậy a=b

25 tháng 9 2021

\(A=1+2+2^2+2^3+...+2^{2021}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)

25 tháng 9 2021

\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)

28 tháng 12 2021

vuigiúp mk vs

28 tháng 12 2021

\(a=1+2+2^2+...+2^{2021}\)

\(\Rightarrow2a=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow2a-a=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\)

\(\Rightarrow a=2^{2022}-1\)

\(\Rightarrow a=2^{2022}-1=b\)

24 tháng 10 2021

\(\Rightarrow2A=2+2^2+2^3+...+2^{2003}\\ \Rightarrow2A-A=2+2^2+2^3+...+2^{2003}-1-2-...-2^{2002}\\ \Rightarrow A=2^{2003}-1=B\)

24 tháng 10 2021

undefined

11 tháng 5 2019

A = 1 + 2 + 22 + 23 + ... + 22002

=> 2A = 2 + 22 + 23 + 24 + ... + 22003

=> 2A - A = ( 2 + 22 + 23 + 24 + ... + 22003 ) - ( 1 + 2 + 22 + 23 + ... + 22002 )

A = 22003 - 1 < 22003 

hay A < B

Vậy ...

11 tháng 5 2019

\(A=1+2+2^2+2^3+...+2^{2002}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2002}+2^{2003}\)

\(\Rightarrow2A-A=2^{2003}-1\)

\(\Rightarrow A=2^{2003}-1\)

Vì \(2^{2003}-1< 2^{2003}\)

nên A < B

2 tháng 1 2022

\(A=1+3+3^2+...+3^{2001}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2002}\)

\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2002}-1-3^2-3^3-...-3^{2001}\)

\(\Rightarrow2A=3^{2002}-1\)

\(\Rightarrow A=\dfrac{3^{2002}-1}{2}\)

Vì \(\dfrac{3^{2002}-1}{2}< 3^{2002}-1\Rightarrow A< B\)

7 tháng 7 2015

A = 1 + 2 + 2² + ... + 2^2002  

A = 1 + (2 + 2² + ... + 2^2002 )  

Ta xét :  

u1 = 2  

u2 = 2.2 = 22  

u3 = 2.22 = 2^3  

u2002 = 2.2^2001 = 2^2002  

Tổng cấp số nhân : S = u1.(1 - q^n) / (1 - q) = 2.(1 - 2^2002) / (1 - 2) = 2(2^2002 - 1) = 2^2003 - 2  

A = 1 + 2^2003 - 2 = 2^2003 - 1  

So sánh với B  

2^2003 - 1 = 2^2003 - 1

 Vậy B = A 

7 tháng 7 2015

A<B                      

25 tháng 12 2021

giúp mình với

28 tháng 12 2021

nhanh nhanh nhanh nhanh nhanh nhanh nhanh nhanh

 

 

28 tháng 12 2021

\(A=1+2+2^2+...+2^{2020}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2021}\)

\(\Rightarrow2A-A=2+2^2+2^3+...+2^{2021}-1-2-2^2-...-2^{2020}\)

\(\Rightarrow A=2^{2021}-1\)

\(\Rightarrow A=2^{2021}-1=B\)

1 tháng 12 2016

Ta có:

\(B=2^{2012}+2^{2011}+...+2^3+2^2+2+1\)

\(\Rightarrow2B=2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\)

\(\Rightarrow2B-B=\left(2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\right)-\left(2^{2012}+...+1\right)\)

\(\Rightarrow B=2^{2013}-1\)

\(A=2^{2003}.9+2^{2003}.1005\)

\(\Rightarrow A=2^{2003}.\left(9+1005\right)\)

\(\Rightarrow A=2^{2003}.1024\)

\(\Rightarrow A=2^{2003}.2^{10}\)

\(\Rightarrow A=2^{2013}\)

\(2^{2013}-1< 2^{2013}\) nên A > B

Vậy A > B