cho x,y,z thỏa:
x(x-1)+y(y-1)+z(z-1)≤\(\frac{4}{3}\)
cmr: x+y+z ≤4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dễ dàng chứng minh BĐT
\(x^4+y^4\ge x^3y+xy^3\)
\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x+y\right)\left(x^3+y^3\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
Chứng minh tương tự, cộng theo vế, ta có:
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{2\left(x+y+z\right)}{2}=2\)
Dấu "=" xảy ra khi x=y=z=1/3
Cho x,y,z là ba số thực dương thỏa:x+y+z=3 .Tìm GTNN của biểu thức Q=x+1/1+y^2 +y+1/1+z^2 +z+1/1+x^2
Trước hết ta sẽ chứng minh bổ đề phụ sau, với mọi a,b dương ta có:
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Thật vậy biến đổi tương đương ta đưa về \(\left(a-b\right)^2\left(a^2+ab+b^2\right)=0\)
BĐT này luôn đúng, thế thì
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Rightarrow\left(a^4+b^4\right)\ge\frac{\left(a+b\right)\left(a^3+b^3\right)}{2}\)
\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\)
Như vậy ta có:
\(\hept{\begin{cases}\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\\\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\\\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\end{cases}}\)
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=1\)
Dấu '=' xảy ra khi x=y=z=1/3
Đặng Ngọc Quỳnh không cần a,b rồi suy ra x,y, quá lòng vòng
Bạn tham khảo cách làm tại đây
Câu hỏi của Pham Quoc Cuong - Toán lớp 8 - Học toán với OnlineMath
Áp dụng BĐT Schwars và BĐT AM - GM:
\(\frac{x}{x^4+1+2xy}\le\frac{1}{4}x\left(\frac{1}{x^4+1}+\frac{1}{2xy}\right)=\frac{1}{4}\left(\frac{x}{x^4+1}+\frac{1}{2y}\right)\le\frac{1}{4}\left(\frac{x}{2x^2}+\frac{1}{2y}\right)=\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}\right)\).
Tương tự rồi cộng vế với vế ta được:
\(\frac{x}{x^4+1+2xy}+\frac{y}{y^4+1+2yz}+\frac{z}{z^4+1+2zx}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2z}+\frac{1}{2x}\right)=\frac{1}{4}.3=\frac{3}{4}\left(đpcm\right)\)
Đặt vế trái là P
\(P\le\frac{x}{2x^2+2xy}+\frac{y}{2y^2+2yz}+\frac{z}{2z^2+2zx}=\frac{1}{2\left(x+y\right)}+\frac{1}{2\left(y+z\right)}+\frac{1}{2\left(z+x\right)}\)
\(P\le\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)
tương tự
\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);
\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);
cộng vế với vế => đpcm
Dấu "=" xảy ra <=> x=y=z=1
Áp dụng bất đẳng thức Cauchy - Schwarz : \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\)
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1^2}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)(\(\left(a+b\right)^2\ge4a\))
Tương tự: \(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4};\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\)
\(\Rightarrow2.\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\ge4\left(\frac{x}{x^6+y^4}+\frac{y}{y^6+z^4}+\frac{z}{z^6+x^4}\right)\)
\(\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
với x,y,z >0 áp dụng bđt cosi ta có:
\(x^6+y^4>=2\sqrt{x^6y^4}=2x^3y^2\Rightarrow\frac{2x}{x^6+y^4}< =\frac{2x}{2x^3y^2}=\frac{1}{x^2y^2}\)
\(y^6+z^4>=2\sqrt{y^6z^4}=2y^3z^2\Rightarrow\frac{2y}{y^6+z^4}< =\frac{2y}{2y^3z^2}=\frac{1}{y^2z^2}\)
\(z^6+x^4>=2\sqrt{z^6x^4}=2z^3x^2\Rightarrow\frac{2z}{z^6+x^4}< =\frac{2z}{2z^3x^2}=\frac{1}{z^2x^2}\)
\(\Rightarrow\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}< =\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\left(1\right)\)
với x,y,z>0 áp dụng bđt cosi ta có:
\(\frac{1}{x^4}+\frac{1}{y^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{y^4}}=\frac{2}{x^2y^2}\)
\(\frac{1}{y^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{y^4}\cdot\frac{1}{z^4}}=\frac{2}{y^2z^2}\)
\(\frac{1}{x^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{z^4}}=\frac{2}{x^2z^2}\)
\(\Rightarrow\frac{2}{x^4}+\frac{2}{y^4}+\frac{2}{z^4}>=\frac{2}{x^2y^2}+\frac{2}{y^2z^2}+\frac{2}{x^2z^2}\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}>=\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}\)
\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow\frac{2x}{x^6+y^4}+\frac{2x}{y^6+z^4}+\frac{2x}{z^6+x^4}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)(đpcm)
dấu = xảy ra khi x=y=z=1
\(\frac{4}{x^2+7}=\frac{4}{x^2+1+y^2+1+z^2+1+x^2+1}\le\frac{4}{4x+2y+2z}=\frac{2}{2x+y+z}\)
đến đây tự làm nha
\(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)< =\frac{4}{3}\Rightarrow x^2-x+y^2-y+z^2-z< =\frac{4}{3}\)
\(\Rightarrow3x^2-3x+3y^2-3y+3z^2-3z< =4\Rightarrow3\left(x^2+y^2+z^2\right)-3\left(x+y+z\right)< =4\)
\(3\left(x^2+y^2+z^2\right)=\left(1+1+1\right)\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)
\(\Rightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)< =3\left(x^2+y^2+z^2\right)-3\left(x+y+z\right)< =4\)
\(\Rightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)< =4\Rightarrow\left(x+y+z\right)\left(x+y+z-3\right)< =4\)
\(x+y+z>4\Rightarrow x+y+z-3>1\Rightarrow\left(x+y+z\right)\left(x+y+z-3\right)>4\cdot1=4\)(loại)
\(x+y+z=4\Rightarrow x+y+z-3=1\Rightarrow\left(x+y+z\right)\left(x+y+z-3\right)=4\cdot1=4\left(tm\right)\)
\(x+y+z< 4\Rightarrow x+y+z-3< 1\Rightarrow\left(x+y+z\right)\left(x+y+z-3\right)< 4\cdot1=4\left(tm\right)\)
\(\Rightarrow x+y+z< =4\)thì \(\left(x+y+z\right)\left(x+y+z-3\right)< =4\)
dấu = xảy ra khi \(x=y=z=\frac{4}{3}\)
vậy \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)< =\frac{4}{3}\Rightarrow x+y+z< =4\)dấu = xảy ra khi \(x=y=z=\frac{4}{3}\)