Phân tích đa thức thành nhân tử:
(x+y)5 -x5 -y5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)
2) \(9-6\sqrt{a}+a=\left(\sqrt{a}-3\right)^2\)
3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)
5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)
1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\)
2) \(9-6\sqrt{a}+a=\left(3-\sqrt{a}\right)^2\)
3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)
5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1^2=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)
b: \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)
c: \(x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
Lời giải:
a. Bạn xem lại đề
b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)
\(=(x-2)^2(x+2)^2\)
c.
\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)
\(=x^2(x^2+1)(x-1)\)
a,\(x^5+x-1=x^5+x^4-x^2-x^4-x^3+x+x^3+x^2-1=\left(x^5+x^4-x^2\right)-\left(x^4+x^3-x\right)+\left(x^3+x^2-1\right)=x^2\left(x^3+x^2-1\right)+x\left(x^3+x^2-1\right)+\left(x^3+x^2-1\right)=\left(x^2+x+1\right)\left(x^3+x^2-1\right)\)b,\(y\left(y-2\right)-5=y^2-2y-5=\left(y^2-2y+1\right)-6=\left(y-1\right)^2-\sqrt{6^2}=\left(y-1-\sqrt{6}\right)\left(y-1+\sqrt{6}\right)\)
câu a) x^5 +x+1=x^5 -x^2 +x^2 +x+1=x^2(x^3-1) +x^2 +x+1=x^2(x-1)(x^2+x+1) +x^2 +x+1=(x^2+x+1)(x^3-x^2 +1)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 4:
\(x^3-2x^2+x=x\left(x-1\right)^2\)
\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)
\(x^2-12x+36=\left(x-6\right)^2\)
=x5+5x4y+10x3y2+10x2y3+5xy4+y5-x5-y5
=5x4y+10x3y2+10x2y3+5xy4
=5xy(x3+y3)+10x2y2(x+y)
=5xy(x+y)(x2-xy+y2)+10x2y2(x+y)
=5xy(x+y)(x2-xy+y2+2xy)
=5xy(x+y)(x2+xy+y2)