cho 2 tam giác đều ABC và MNP ở ngoài nhau (tên các đỉnh ký hiệu theo chiều kim đồng hồ). H,I,K thứ tự là trung điểm của AM,BN,CP.
a) CM tam giác HIK đều.
b) S2 chu vi tam giác HIK với tổng chu vi của tam giác ABC và MNP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài có sai không bạn? Hai tam giác ABC và MNP tách biệt à?
Câu 1:
a) A = E ; đỉnh A đối với đinh E
B = D ; đỉnh B đối với đỉnh D
-> Hình tam giác ABC = hình tam giác EDF
b)AB = EF { A đối với E hoặc F }(1)
{ B đối với E hoặc F }
AC = FD { A đối với F hoặc D }
{ C đối với F hoặc D }
Ta có: => A phải đối với F
B phải đối với E -> hình tam giác ABC = hình tam giác FED
C đối với D
Vậy tỉ số chu vi của hai tam giác đồng dạng này cũng là 5, còn nếu là chu vi thì bình phương tỉ số lên
a) Xét tg AGB có: M là trung điểm của GA (gt); N là trung điểm của GB (gt)
\(\Rightarrow\)MN là đường trung bình của tg \(\Rightarrow\)MN= 1/2 AB \(\Rightarrow\)MN/AB =1/2
CM tương tự: MP/AC =1/2 ; NP/BC =1/2
Xét tg MNP và tg ABC có: MN/AB =1/2 (cmt); MP/AC =1/2 (cmt); NP/BC =1/2 (cmt)
\(\Rightarrow\)tg MNP \(\infty\)tg ABC (c.c.c) theo tỉ số 1/2
b) tg MNP \(\infty\)tg ABC (c.c.c) theo tỉ số 1/2 \(\Rightarrow\)\(\frac{P\Delta MNP}{P\Delta ABC}=\frac{1}{2}\)mà \(P\Delta MNP=18cm\Rightarrow\)\(P\Delta ABC=\)2.18=36cm
(mk vẽ hình hơi xấu thông cảm nha)
Ta gọi chu vi của hai tam giác ABC và MNP lần lượt là x, y.
Theo giả thiết, ta có: x y = 2 5 và y - x = 51.
Từ đó tính được y = 85cm; x = 34cm