K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Giúp mik vs

6 tháng 5 2020

ủa, avatar mình giống bạn nè

29 tháng 6 2017

A B C x 3 4 1 1 1 2 E 2 2 D

a)

Xét \(\Delta DCE\)và \(\Delta DBA\)có:

\(\widehat{D_1}=\widehat{D_2}\)( Đối  đỉnh)

\(\widehat{A_1}=\widehat{C_1}\)(giả thiết)

Suy ra \(\Delta DCE\) đồng dạng với \(\Delta DBA\)(g.g)

31 tháng 3 2018

Câu b đi

31 tháng 3 2017

“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}

““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}

18 tháng 1 2018

cho abc tia phan giac cua goc b cat ac o d tren tia doi cua tia ba lay e sao cho be = bc chung minh bd song song ec cai nay lam sao

a: Ta có: D đối xứng H qua AB

=>AB là đường trung trực của HD

=>AH=AD và BH=BD

Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

=>\(\widehat{HAB}=\widehat{DAB}\)

mà tia AB nằm giữa hai tia AH,AD

nên AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

Ta có: H đối xứng E qua AC

=>AH=AE và CH=CE

Xét ΔAHC và ΔAEC có

AH=AE

CH=CE

AC chung

Do đó: ΔAHC=ΔAEC

=>\(\widehat{HAC}=\widehat{EAC}\)

mà tia AC nằm giữa hai tia AH,AE

nên AC là phân giác của góc HAE

=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)

=>E,A,D thẳng hàng

Ta có: ΔAHB=ΔADB

=>\(\widehat{AHB}=\widehat{ADB}\)

=>\(\widehat{ADB}=90^0\)

=>BD\(\perp\)DE

Ta có: ΔAHC=ΔAEC

=>\(\widehat{AHC}=\widehat{AEC}\)

=>\(\widehat{AEC}=90^0\)

=>CE\(\perp\)ED

mà BD\(\perp\)DE

nên BD//CE

b: Ta có: \(\widehat{BAD}+\widehat{CAE}=\dfrac{1}{2}\left(\widehat{HAD}+\widehat{HAE}\right)\)

=>\(\widehat{BAD}+\widehat{CAE}=\dfrac{1}{2}\cdot180^0=90^0\)

mà \(\widehat{BAD}+\widehat{ABD}=90^0\)(ΔDAB vuông tại D)

nên \(\widehat{ABD}=\widehat{CAE}\)

Xét ΔABD vuông tại D và ΔCAE vuông tại E có

\(\widehat{ABD}=\widehat{CAE}\)

Do đó: ΔABD~ΔCAE