Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: D đối xứng H qua AB
=>AB là đường trung trực của HD
=>AH=AD và BH=BD
Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
=>\(\widehat{HAB}=\widehat{DAB}\)
mà tia AB nằm giữa hai tia AH,AD
nên AB là phân giác của góc HAD
=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)
Ta có: H đối xứng E qua AC
=>AH=AE và CH=CE
Xét ΔAHC và ΔAEC có
AH=AE
CH=CE
AC chung
Do đó: ΔAHC=ΔAEC
=>\(\widehat{HAC}=\widehat{EAC}\)
mà tia AC nằm giữa hai tia AH,AE
nên AC là phân giác của góc HAE
=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)
=>\(\widehat{EAD}=2\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)
=>E,A,D thẳng hàng
Ta có: ΔAHB=ΔADB
=>\(\widehat{AHB}=\widehat{ADB}\)
=>\(\widehat{ADB}=90^0\)
=>BD\(\perp\)DE
Ta có: ΔAHC=ΔAEC
=>\(\widehat{AHC}=\widehat{AEC}\)
=>\(\widehat{AEC}=90^0\)
=>CE\(\perp\)ED
mà BD\(\perp\)DE
nên BD//CE
b: Ta có: \(\widehat{BAD}+\widehat{CAE}=\dfrac{1}{2}\left(\widehat{HAD}+\widehat{HAE}\right)\)
=>\(\widehat{BAD}+\widehat{CAE}=\dfrac{1}{2}\cdot180^0=90^0\)
mà \(\widehat{BAD}+\widehat{ABD}=90^0\)(ΔDAB vuông tại D)
nên \(\widehat{ABD}=\widehat{CAE}\)
Xét ΔABD vuông tại D và ΔCAE vuông tại E có
\(\widehat{ABD}=\widehat{CAE}\)
Do đó: ΔABD~ΔCAE
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
a: Xét ΔBED vuông tại E và ΔBAC vuông tại A có
góc B chung
=>ΔBED đồng dạng vơi ΔBAC
b: Xet ΔCAB co FD//AB
nên DB/DC=FA/FC
vì DC=AC mà E là điểm đối xứng D qua C=>DC=CE
=>DC=AC=CE mà DC+CE=DE
=>AC=1/2.DE
=>tam giác ADE vuông tại A=>góc CAE+ góc CAD=90 độ(1)
lại có tam giác ABC vuông tại A=> góc BAD+ góc CAD=90 độ(2)
từ (1)(2)=> góc CAE=góc BAD(3)
mà AC=CE=>tam giác ACE cân tại C=> góc CAE=góc CEA(4)
từ (3)(4)=> góc BAD=Góc CEA
xét tam giác ABD và tam giác EBA có góc B chung
góc BAD=Góc CEA(cmt)
=> tam giác ABD đồng dạng tam giác EBA(góc.góc)
=>AB/BE=AD/AE<=>AB.AE=AD.BE
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có
\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)
=>\(AH\cdot DC=CE\cdot AD\)
c: Ta có: ΔAHD~ΔCED
=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)
=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
Xét ΔDAC và ΔDHE có
\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)
Do đó: ΔDAC~ΔDHE
d: Xét ΔCAF có
AE,CH là các đường cao
AE cắt CH tại D
Do đó: D là trực tâm của ΔCAF
=>DF\(\perp\)AC
mà AB\(\perp\)AC
nên DF//AB
Xét ΔHDF vuông tại H và ΔHBA vuông tại H có
HD=HB
\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)
Do đó: ΔHDF=ΔHBA
=>HF=HA
=>H là trung điểm của AF
Xét tứ giác ABFD có
H là trung điểm chung của AF và BD
=>ABFD là hình bình hành
Hình bình hành ABFD có AF\(\perp\)BD
nên ABFD là hình thoi
a: Ta có: H và E đối xứng nhau qua AB
nên AH=AE và AB là tia phân giác của góc HAE(1)
Ta có: H và D đối xứng nhau qua AC
nên AH=AD và AC là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra D và E đối xứng nhau qua A