K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Ta có: \(AD=\sqrt{AB^2-BD^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)

\(CD=\sqrt{BC^2-BD^2}=\sqrt{17^2-8^2}=15\left(cm\right)\)

\(\Rightarrow AC=CD+AD=6+15=21\left(cm\right)\)

NV
28 tháng 4 2021

\(AC=AB=6\)

Áp dụng định lý phân giác:

\(\dfrac{AD}{AB}=\dfrac{DC}{BC}\Leftrightarrow\dfrac{AD}{6}=\dfrac{6-AD}{10}\)

\(\Leftrightarrow10AD=36-6AD\Rightarrow AD=\dfrac{9}{4}\) (cm)

\(\Rightarrow DC=AC-AD=\dfrac{15}{4}\) (cm)

14 tháng 5 2022

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á

 

14 tháng 5 2022

Câu 3 là phần c nha

 

27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

b: ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC=DB/EC

=>8/CE=10/12=5/6

=>CE=8:5/6=8*6/5=9,6cm

14 tháng 11 2017

5:

1: BE//AC

AC vuông góc BD

=>BE vuông góc BD

=>ΔBED vuông tại B

2: 

DH=căn BD^2-BH^2=9cm

ΔBED vuông tại B có BH là đường cao

nên BD^2=DH*DE

=>DE=15^2/9=25cm

BE=căn 25^2-15^2=20(cm)

15 tháng 11 2021

Gọi AH là cc tương ứng với BC

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)