Tìm số tự nhiên \(⋮\)7 có ba chữ số,biết rằng tổng các chữ số của số đó bằng 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có thể lập trình để kiểm tra kết quả như thế này nhé:
Gọi số đó là \(\overline{xyz}\). Theo đề bài, ta có: \(x+y+z=14\) và \(100x+10y+z⋮7\) \(\Rightarrow99x+9y⋮7\) \(\Rightarrow11x+y⋮7\) \(\Rightarrow4x+y⋮7\)
Do \(4\le4x+y\le45\) nên \(4x+y\in\left\{7,14,21,28,35,42\right\}\)
Nếu \(4x+y=7\Rightarrow x=1,y=3\) \(\Rightarrow z=10\), vô lí
Nếu \(4x+y=14\Rightarrow\left(x,y\right)=\left(2,6\right),\left(3,2\right)\) \(\Rightarrow\overline{xyz}=266,329\)
Nếu \(4x+y=21\) \(\Rightarrow\left(x,y\right)=\left(3,9\right),\left(4,5\right),\left(5,1\right)\) \(\Rightarrow\overline{xyz}=392,455,518\)
Nếu \(4x+y=28\Rightarrow\left(x,y\right)=\left(5,8\right),\left(6,4\right),\left(7,0\right)\) \(\Rightarrow\overline{xyz}=581,644,707\)
Nếu \(4x+y=35\) \(\Rightarrow\left(x,y\right)=\left(7,7\right),\left(8,3\right)\) \(\Rightarrow\overline{xyz}=770,833\)
Nếu \(4x+y=42\Rightarrow\left(x,y\right)=\left(9,6\right)\) \(\Rightarrow z=-1\), vô lí.
Vậy ta tìm được các số như trên.
Goi số cần tìm là abc
Theo đề bài: a+b+c=14 (*)
Ta có
abc=100.a+10.b+c=(98a+7b)+(2a+2b+2c)+b-c=(98a+7b)+2.(a+b+c)+b-c=98a+7b+2.14+b-c chia hết cho 7
Ta thấy 98a+7b+28 chia hết cho 7 => b-c chia hết cho 7
+ Nếu b=c xảy ra các trường hợp b=c=3 hoặc b=c=4 hoặc b=c=5 hoặc b=c=6
+ Nếu b>c xảy ra các trường hợp b=7; c=0 hoặc b=8; c=1 hoặc b=9; c=2
+ Nếu b<c xảy ra các trường hợp b=0; c=7 hoặc b=1; c=8 hoặc b=2; c=9
Thay các trường hợp của b và c vào (*) để tìm a. Bạn tự làm nốt nhé
Gọi đó là abc ta có:
abc = 1000 : ( a + b + c ) hay 1000 = abc x ( a + b + c )
1000 = 2 x 500 = 4 x 250 = 5 x 200 = 8 x 125
= 10 x 100 = 20 x 50 = 25 x 40
Thử các trường hợp chỉ có 1 + 2 + 5 = 8
Vậy số đó là 125.
Bài giải
\(\overline{abc}⋮7\)
\(\Leftrightarrow100a+10b+c⋮7\)
\(\Leftrightarrow98a+7b+2a+3b+c⋮7\)
\(\Leftrightarrow2a+3b+c⋮7\) (1)
Theo đề bài :
\(2a+2b+2c⋮7\)(2)
Từ (1) và (2) :
\(\left(2a+3b+c\right)-\left(2b+2b+2c\right)⋮7\)
\(\Leftrightarrow b-c⋮7\)
\(\Leftrightarrow b-c\in\left\{-7;0;7\right\}\)
Trường hợp b-c=7.Ta có :
Trường hợp b-c=-7.Ta có :
Trường hợp b-c=0.Ta có :
8
Tất cả có 10 số thỏa mãn bài toán:
\(770,581,392,707,518,329,266,455,644,833.\)