K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

Tu bieu thuc \(\Leftrightarrow\frac{3.\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{14\sqrt{7}}{7}+|\sqrt{7}-2|\)

                    \(\Leftrightarrow3\sqrt{7}+6-2\sqrt{7}+\sqrt{7}-2=2\sqrt{7}+4\)

13 tháng 8 2018

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}\)

\(=\frac{1}{4}\)

28 tháng 6 2019

a. \(=\sqrt{2}.\left(\sqrt{7}+\sqrt{8}\right)\sqrt{5-\sqrt{3}\sqrt{7}}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{3-2\sqrt{3}.\sqrt{7}+7}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

Rồi nhân ra. bạn làm tiếp nhé. Tuy nhiên minh nghĩ bạn bị nhầm đề. là \(\sqrt{6}\) chứ không phải căn 16

b. \(=\frac{5\left(\sqrt{21}+1\right)}{21-16}+\frac{\sqrt{3}.\sqrt{7}\left(\sqrt{3}-\sqrt{7}\right)}{-\left(\sqrt{3}-\sqrt{7}\right)}\)

\(=\sqrt{21}+4-\sqrt{21}=4\)

Mình coi lại r  \(\sqrt{16}\) nhé

21 tháng 8 2020

đkxđ: \(x\ge0;x\ne4\)

\(Q=\left[\frac{x-\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}\right]\div\left[\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\)

\(Q=\left[\frac{x-\sqrt{x}+7+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\div\left[\frac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\)

\(Q=\frac{x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\div\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(Q=\frac{x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{6\sqrt{x}}\)

\(Q=\frac{\left(x+9\right)\sqrt{x}}{6x}\)

\(Q=\frac{x\sqrt{x}+9\sqrt{x}}{6x}\)

21 tháng 8 2020

đkxđ sửa tí thành \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)