K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

a. \(=\sqrt{2}.\left(\sqrt{7}+\sqrt{8}\right)\sqrt{5-\sqrt{3}\sqrt{7}}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{3-2\sqrt{3}.\sqrt{7}+7}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

Rồi nhân ra. bạn làm tiếp nhé. Tuy nhiên minh nghĩ bạn bị nhầm đề. là \(\sqrt{6}\) chứ không phải căn 16

b. \(=\frac{5\left(\sqrt{21}+1\right)}{21-16}+\frac{\sqrt{3}.\sqrt{7}\left(\sqrt{3}-\sqrt{7}\right)}{-\left(\sqrt{3}-\sqrt{7}\right)}\)

\(=\sqrt{21}+4-\sqrt{21}=4\)

Mình coi lại r  \(\sqrt{16}\) nhé

28 tháng 11 2019

Ta có: \(A=\left(5+\frac{7-\sqrt{21}}{\sqrt{7}-\sqrt{3}}\right)\sqrt{16-5\sqrt{7}}\)

\(=\left(5+\frac{\sqrt{7}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{7}-\sqrt{3}}\right)\sqrt{16-5\sqrt{7}}\)

\(=\left(5+\sqrt{7}\right)\sqrt{16-5\sqrt{7}}\)

\(\Rightarrow\sqrt{2}A=\left(5+\sqrt{7}\right)\sqrt{32-10\sqrt{7}}\)

\(=\left(5+\sqrt{7}\right)\sqrt{\left(5-\sqrt{7}\right)^2}=\left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right)\)

\(=25-7=18\)

Vậy \(A=\frac{18}{\sqrt{2}}=9\sqrt{2}\)

a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)

=3-4=-1

b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)

c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(=2\sqrt{5}-1+2\sqrt{5}+1\)

\(=4\sqrt{5}\)

20 tháng 6 2021

`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`

`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`

`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`

`=sqrt2(sqrt5+1+sqrt5-1)`

`=sqrt{2}.2sqrt5`

`=2sqrt{10}`

20 tháng 6 2021

`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`

`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`

`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`

`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`

`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`

`=2(7-3)`

`=8`

`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`

`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`

`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`

`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`

`=2/sqrt2=sqrt2`

2 tháng 11 2023

a) \(2\sqrt{32}+3\sqrt{72}-7\sqrt{50}+\sqrt{2}\)

\(=2\cdot4\sqrt{2}+3\cdot6\sqrt{2}-7\cdot5\sqrt{2}+\sqrt{2}\)

\(=8\sqrt{2}+18\sqrt{2}-35\sqrt{2}+\sqrt{2}\)

\(=-8\sqrt{2}\) 

b) \(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=3-\sqrt{3}+\sqrt{3}-2\)

\(=1\)

c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)

\(=\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)

\(=x-4+\sqrt{x^2-8x+16}\)

\(=x-4+\sqrt{\left(x-4\right)^2}\)

\(=x-4+\left|x-4\right|\)

\(=x-4+x-4\)

\(=2x-8\) 

e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\left(a< b\right)\)

\(=\dfrac{1}{a-b}\sqrt{\left[a^2\left(a-b\right)\right]^2}\)

\(=\dfrac{1}{a-b}\left|a^2\left(a-b\right)\right|\)

\(=\dfrac{-a^2\left(a-b\right)}{a-b}\)

\(=-a^2\)

25 tháng 7 2018

a,\(x\ge0,x\ne49\)