K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

ĐKXĐ a>0 và a≠1

Rút gọn được A=2+2(a+1)/√a

A=7 → 2+2(a+1)/√a=7→2a-5√a+2=0, giải ra a=4 hoặc a=1/4.

Do a≠1 nên (√a-1)²>0 → a+1>2√a, do đó A>2+2.2√a/√a=6. Vậy A>6 với mọi a>0 và a≠1

25 tháng 5 2018

Bản trả lời câu a ra hộ mình đi

10 tháng 8 2019

Em kiểm tra lại đề bài nhé!

20 tháng 8 2017

\(A=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right)\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)

\(A=\left[\frac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{a+b+\sqrt{ab}-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{a+\sqrt{ab}+b}{a-b}\right]\)

\(A=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]\)

\(A=\frac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{a-\sqrt{ab}+b}\)


Điều kiện : a, b\(\ge0\)

5 tháng 10 2015

\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\sqrt{a}\left(a+1\right)-\left(a+1\right)}\right)\)

\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right)\)

\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right)\)

\(=\frac{a+\sqrt{a}+1}{a+1}.\frac{\left(\sqrt{a}-1\right)\left(a+1\right)}{a+1-2\sqrt{a}}\)

\(=\frac{\left(a+1\right)\left(a+\sqrt{a}+1\right)}{a-2\sqrt{a}+1}\)

\(=\frac{a^2+a\sqrt{a}+2\text{a}+\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\frac{\left(a+\sqrt{a}+1\right)\left(a+1\right)}{a-2\sqrt{a}+1}\)

câu a đã có người làm rồi nên mình không làm

tick cho mình nha

2 tháng 8 2017

Điều kiện : a> 0 ; a khác 1

\(A=\frac{\left(\sqrt{a}\right)^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}\right)^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{2a+2}{a-1}\right)\)

\(A=\frac{2\sqrt{a}}{\sqrt{a}}+\frac{2\left(a+1\right)}{\sqrt{a}}=2+\frac{2\sqrt{a}\left(a+1\right)}{a}\)