Cho đoạn thẳng AB=2a.Từ trung điểm O của AB kẻ Ox vuông góc với AB tại O.Trên Ox lấy D sao cho OD = a:2.Kẻ BC vuông góc với BC tại C(AD kéo dài)
a/tính AD,AC,BC theo a
b/Kéo dài DO 1 đoạn DE bằng a.CM A,B.C cùng nằm trên 1 đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
O là trung điểm AB \(\Rightarrow OA=OB=\dfrac{AB}{2}=a\)
Áp dụng định lý Pitago:
\(AD=\sqrt{AO^2+OD^2}=\dfrac{a\sqrt{5}}{2}\)
Xét hai tam giác vuông AOD và ACB có góc A chung
\(\Rightarrow\Delta AOD\sim\Delta ACB\Rightarrow\dfrac{AD}{AB}=\dfrac{AO}{AC}\Rightarrow AC=\dfrac{AO.AB}{AD}=\dfrac{4a\sqrt{5}}{5}\)
\(BC=\sqrt{AB^2-AC^2}=\dfrac{2a\sqrt{5}}{5}\)
b. Ta có: \(AE=\sqrt{AO^2+OE^2}=a\sqrt{2}\)
\(BE=\sqrt{OB^2+OE^2}=a\sqrt{2}\)
\(\Rightarrow AE^2+BE^2=4a^2=AB^2\)
\(\Rightarrow\Delta ABE\) vuông tại E (Pitago đảo)
\(\Rightarrow\) Hai điểm E và C cùng nhìn AB dưới 1 góc vuông nên bốn điểm A,B,C,E cùng thuộc đường tròn đường kính AB (đpcm)
a: BC=căn 5^2+12^2=13cm
b: Xét ΔABE vuông tại B va ΔDBE vuông tại B có
BE chung
BA=BD
=>ΔABE=ΔDBE
=>EA=ED
=>ΔEAD cân tại E
c: Xét ΔBKA vuông tại K và ΔBFD vuông tại F có
BA=BD
góc ABK=góc DBF
=>ΔBKA=ΔBFD
=>BK=BF
=>B là trung điểm của KF
d: góc EAD+góc EAC=90 độ
góc EDA+góc ECA=90 độ
mà góc EAD=góc EDA
nên góc EAC=góc ECA
=>ΔEAC cân tại E
=>EA=EC=ED
=>E là trung điểm của DC
a: BC=13cm
b: Xét ΔABE vuông tại B và ΔDBE vuông tại B có
BE chung
BA=BD
Do đó: ΔABE=ΔDBE
Suy ra: EA=ED
hay ΔEAD cân tại E
c: Xét ΔAKB vuông tại K và ΔDFB vuông tại F có
BA=BD
\(\widehat{ABK}=\widehat{DBF}\)
Do đó: ΔAKB=ΔDFB
Suy ra: BK=BF
hay B là trung điểm của KF
a: BC=13cm
b: Xét ΔABE vuông tại B và ΔDBE vuông tại B có
BA=BD
BE chung
Do đó: ΔABE=ΔDBE
Suy ra: AE=DE
hay ΔAED cân tai E