Tìm \(\overline{ab}\)có 2 chữ số sao cho:
\(\sqrt{ab}=a+b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất \(\Rightarrow\)\(1+\frac{b}{a}\)lớn nhất \(\Rightarrow\frac{b}{a}\)lớn nhất \(\Rightarrow\)b lớn nhất , a nhỏ nhất
\(\Rightarrow\)b = 9 ; a = 1
Vậy \(A_{min}=\frac{19}{1+9}=1,9\)
ta thấy ab2=(a+b)3 nên ab là lập phương 1 số ,a+b là bình phương 1 số
ta có:a\(\supseteq\)9,b\(\supseteq\)9 nên a+b\(\supseteq\)18
nên a+b có thể là 4 ,9, 16
xét a+b=4 thì không có giá trị a,b nào phù hợp để ab là số lập phương
xét a+b=9 thid a,b có giá trị phù hợp là 2,7 thì được ab=27 (thỏa mãn)
xét a+b=16 thì cũng không có giá trị nào phù hợp
vậy a=2,b=7 thì thỏa mãn
Vì \(\left(a+b\right)^3\) là SCP
=> Đặt \(a+b=x^2\)
=> \(\overline{ab}^2=x^6\)
<=> \(\overline{ab}=x^3\)
Vì \(10\le\overline{ab}\le99\) => \(x^2\in\left\{27;64\right\}\Rightarrow x\in\left\{3;4\right\}\)
Nếu x = 3 => \(\overline{ab}=27\)
<=> \(\overline{ab}^2=27^2=9^3=\left(2+7\right)^3\left(tm\right)\)
Nếu x = 4 => \(\overline{ab}=64\)
<=> \(\overline{ab}^2=64^2=16^3\ne\left(6+4\right)^3\) => loại
Vậy SCT là 27, xem bài mình nè, chiều đi học nhé:))
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365
\(a,b\)là các số tự nhiên nên\(\sqrt{\overline{ab}}\)phải là số tự nhiên. Do đó \(\overline{ab}\)là số chính phương.
Suy ra \(\overline{ab}\in\left\{16;25;36;49;64;81\right\}\)
Ta thấy \(\overline{ab}=81\)thỏa mãn \(\sqrt{\overline{ab}}=a+b\)nên \(\overline{ab}=81\)
Vậy số đó là 81
Hiển nhiên a;b dương.
Áp dụng bđt AM-GM: \(a+b\ge2\sqrt{ab}\ge ab\)
\(\Rightarrow a+b=\sqrt{ab}\)khi và chỉ khi: \(\hept{\begin{cases}a=b\\\orbr{\begin{cases}a=0\\b=0\end{cases}}\end{cases}}\Leftrightarrow a=b=0\)
Suy ra ko tìm được \(\overline{ab}\)thỏa mãn điều kiện