Cho x, ,y là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dự đoán của chúa Pain x=y=1
áp dụng BDT cô si ta có
\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)
dấu = xảy ra khi
\(\left(x+y+1\right)^2=xy+x+y\) :)
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không
Ta có :
\(P=\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\) (1)
Do : \(x^2+y^2+z^2\ge xy+yz+zx\), nên từ (1) ta có :
\(P\ge\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)
\(P\ge\left(\frac{x^2}{2}+\frac{1}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{y}\right)+\left(\frac{z^2}{2}+\frac{1}{z}\right)\) (2)
Xét hàm số \(f\left(t\right)=\frac{t^2}{2}+\frac{1}{t};t>0\)
Ta có : \(f'\left(t\right)=t-\frac{1}{t^2}=\frac{t^3-1}{t^2}\)
Lập bảng biến thiên sau :
Từ đó suy ra :
\(f\left(t\right)\ge\frac{3}{2}\) với mọi \(t>0\)
Vì lẽ đó từ (2) ta có : \(P\ge3.\frac{3}{2}\) với mọi \(x,y,z>0\)
Mặt khác khi \(x=y=z\) thì \(P=\frac{9}{2}\) vậy Min \(P=\frac{9}{2}\)
Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
Áp dụng BĐT Cô-si, ta có :
\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)
\(\Rightarrow x+y\ge2\)
Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\); \(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)
\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)
Vậy GTNN của P là 2 khi x = y = 1
\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)
\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tai x=y=1/2