K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

Nhận thấy : 

\(3x^2-3x+1=3\left(x^2-x\right)+1=3\left(x-\frac{1}{2}\right)^2-\frac{3}{4}+1=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)

Nên phương trình trên 

<=> \(3x^2-3x+1=1-2x\)

<=> \(3x^2-x=0\)

<=> \(x\left(3x-1\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)

Vậy ................. 

21 tháng 5 2018

Để phương trình trên có nghiệm thì \(1-2x\ge0\Leftrightarrow x\le\frac{1}{2}\)

Ta có: \(3x^2-3x+1=3\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>0\)

Vậy nên \(\left|3x^2-3x+1\right|=3x^2-3x+1\)

Phương trình trở thành:

\(3x^2-3x+1=1-2x\)

\(\Leftrightarrow3x^2-x=0\Leftrightarrow x\left(3x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\left(tmđk\right)\)

Vậy phương trình có 2 nghiệm x = 0 hoặc \(x=\frac{1}{3}.\)

4 tháng 2 2021

\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{5;-2\right\}\)

\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)

Câu d xem lại đề

4 tháng 2 2021

có ai giúp mình câu c và d không mình đang cần gấpyeu

17 tháng 11 2017

Điều kiện xác định: x ≠ 1; x ≠ 2; x ≠ 3.

Giải bài 31 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ 3(x – 3) + 2(x – 2) = x – 1

⇔ 3x – 9 + 2x – 4 = x – 1

⇔ 3x + 2x – x = 9 + 4 – 1

⇔ 4x = 12

⇔ x = 3 (không thỏa mãn điều kiện xác định)

Vậy phương trình vô nghiệm.

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.

4 tháng 4 2021

dạ vâng,em cx không bt có sai ko do đây là đề của thầy em đưa,chắc cx có sai sót mong thầy bỏ qua

a: =>3x=-9

hay x=-3

b: =>3x=2

hay x=2/3

c: =>2x=4

hay x=2

d: =>-2x=-6

hay x=3

e: =>0,5x=1

hay x=2

f: =>0,6x=3,6

hay x=6

g: =>2/3x=4/3

hay x=2

h: =>-3x+3=6x+2

=>-9x=-1

hay x=1/9

i: =>4x-2x=1+3

=>2x=4

hay x=2

6 tháng 2 2022

\(A.3x+9=0\)

\(\Leftrightarrow3x=-9\)

\(\Leftrightarrow x=-2\)

\(B.3x-2=0\)

\(\Leftrightarrow3x=2\)

\(\Leftrightarrow x=\dfrac{2}{3}\)

\(C.4-2x=0\)

\(\Leftrightarrow4=2x\)

\(\Leftrightarrow x=2\)

\(D.-2x+6=0\)

\(\Leftrightarrow6=2x\)

\(\Leftrightarrow x=3\)

\(E.0,5x-1=0\)

\(\Leftrightarrow0,5x=1\)

\(\Leftrightarrow x=2\)

\(F.3,6-0,6x=0\)

\(\Leftrightarrow3,6=0,6x\)

\(\Leftrightarrow x=6\)

\(G.\dfrac{2}{3}x-1=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{4}{3}\)

\(\Leftrightarrow x=2\)

\(H.-\dfrac{1}{3}x+1=\dfrac{2}{3}x-3\)

\(\Leftrightarrow4=x\)

\(\Leftrightarrow x=4\)

\(I.4x-3=2x+1\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

5 tháng 4 2021

undefined

NV
28 tháng 4 2021

Đặt \(2x^2-3x+1=t\Rightarrow2x^2-3x-9=t-10\)

Phương trình trở thành:

\(t\left(t-10\right)=-9\Leftrightarrow t^2-10t+9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x+1=1\\2x^2-3x+1=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x=0\\2x^2-3x-8=0\end{matrix}\right.\)

\(\Leftrightarrow...\) (bấm máy)

14 tháng 8 2017

18 tháng 3 2019

⇔ 4x - 10 = 2 - x

⇔ 4x + x = 2 + 10 ⇔ 5x = 12 ⇔ x = 12/5

Vậy: S = {12/5}

b) (3x + 1) = (3x + 1)2

⇔ (3x + 1)2 - (3x + 1) = 0

⇔ (3x + 1)[(3x + 1) - 1] = 0

ĐKXĐ:x ≠ 1

Quy đồng mẫu hai vế của phương trình ta được:

Khử mẫu hai vế, ta được:

(2x + 3)(x - 1) + 2(x2 + x + 1) = 4x2 - 1

⇔ 2x2 + x - 3 + 2x2 + 2x + 2 = 4x2 - 1

⇔ 3x - 1 = -1

⇔ 3x = 0 ⇔ x = 0 (thỏa mãn điều kiện)

Vậy: S = {0}

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

Di chuyển tất cả các số hạng sang vế trái và đặt = 0. Sau đó đặt mỗi nhân tử = 0 (như cách tìm nghiệm)

\(\Rightarrow x=2;-\frac{17}{6};-\frac{5-i\sqrt{831}}{12};-\frac{5+i\sqrt{831}}{12}\)