Cho tam giác ABC vuông tại A, AH là đường cao, BD là đương phân giác , từ H kẻ HK song song với BD. Chứng minh AB nhân KC = HC nhân Ad
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
12 tháng 2 2023
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
20 tháng 4 2021
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
TG
20 tháng 4 2021
Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))
Vì BD là tia phân giác \(\widehat{ABC}\)\(\Rightarrow\widehat{ABD}=\widehat{CBD}\)(1)
Mà \(HK//BD\)\(\Rightarrow\widehat{DBH}=\widehat{KHC}\)(2)
Từ (1) và (2)\(\Rightarrow\widehat{ABD}=\widehat{KHC}\)
Xét \(\Delta ABD\)và \(\Delta CHK\)có:
\(\widehat{ABD}=\widehat{KHC}\)(chứng minh trên)
\(\widehat{BAD}=\widehat{HCK}\)(cùng phụ \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD~CHK\left(g.g\right)\)
\(\Rightarrow\frac{AB}{CH}=\frac{AD}{CK}\)(2 cặp cạnh tỉ lể tương ứng)
\(\Rightarrow AB.CK=CH.AD\left(đpcm\right)\)
Xong rồi đấy,bạn k cho mình nhé