K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

+13x hay chỉ là +13 thôi?

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

21 tháng 10 2018

Thấy B\(=\frac{x}{2}-\frac{1}{2}+\frac{2}{x-1}+\frac{1}{2}\)

\(=\left(\frac{x-1}{2}+\frac{2}{x-1}\right)+\frac{1}{2}\)

Do x>1>0 nên ADBDDT Cauchy

\(\frac{x-1}{2}+\frac{2}{x-1}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\)

Do đó B\(\ge2+\frac{1}{2}=\frac{3}{2}\)

Dấu = khi x=3

21 tháng 10 2018

Nhầm B\(\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\cdot2=4\)

Do đó B\(\ge4+\frac{1}{2}=\frac{9}{2}\)

15 tháng 9 2021

1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)

\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)

2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

\(maxM=6\Leftrightarrow x=-1\)

3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)

\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)

15 tháng 9 2021

u là trời, cảm ơn bạn nhé:3