Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Với mọi 0 < x < 1 ta có:
\(A=\frac{2}{1-x}+\frac{1}{x}=\frac{\left(\sqrt{2}\right)^2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}=\sqrt{2}+1\Rightarrow x=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Kết luận:...
Thấy B\(=\frac{x}{2}-\frac{1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
\(=\left(\frac{x-1}{2}+\frac{2}{x-1}\right)+\frac{1}{2}\)
Do x>1>0 nên ADBDDT Cauchy
\(\frac{x-1}{2}+\frac{2}{x-1}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\)
Do đó B\(\ge2+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi x=3
Nhầm B\(\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\cdot2=4\)
Do đó B\(\ge4+\frac{1}{2}=\frac{9}{2}\)