cho tam giác ABC vuông tại A,đường cao AH.Lấy E thuộc AC để AE=AB.M là trung điểm BE.CM:HM là tia phân giác của góc AHC!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)vuông tại A, AH là đường cao=> \(AB^2=BH.BC\)(1)
Ta có : AB=AE=> \(\Delta ABE\)vuông cân tại A; có AM là đường trung truyến=> AM là đường cao và \(\widehat{AEM}=45^o\)
\(\Delta ABE\)vuông cân tại A có AM là đường cao=> \(AB^2=BM.BE\)(2)
Từ (1) và (2)=> BH.BC=BM.BE=> \(\frac{BH}{BM}=\frac{BE}{BC}\)
Ta có: \(\frac{BH}{BM}=\frac{BE}{BC}\); \(\widehat{EBC}\)chung=> \(\Delta BHM~\Delta BEC\)(C-G-C)=>\(\widehat{BHM}=\widehat{BEC}\)
Ta có:\(\widehat{BHM}=\widehat{BEC}\)=> \(180^o-\widehat{BHM}=180^o-\widehat{BEC}\)<=>\(\widehat{MHC}=\widehat{AEM}=45^o\)(3)
Lại có : \(\widehat{AHM}=90^o-\widehat{MHC}=90^o-45^o=45^o\)(4)
Từ (3),(4)=> \(\widehat{MHC}\)=\(\widehat{AHM}\)=> HM là tia phân giác góc AHC.
(Chúc bạn học tốt !)
a: Xét tứ giác AKBC có
M là trung điểm của đường chéo CK
M là trung điểm của đường chéo AB
Do đó: AKBC là hình bình hành
Suy ra: BK//AC
b: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAEE}\)
AE chung
Do đó: ΔABE=ΔACE
Kẻ \(EI\perp AH,EK\perp BC\)
C/m EIHK là hình chữ nhật để \(EI=HK\)
Ta có: \(AM=KM\left(=\frac{1}{2}BE\right)\)
\(\Delta AHB=\Delta EIA\left(ch-gn\right)\Rightarrow AH=EI\)
\(\Delta AHM=\Delta KHM\left(c.c.c\right)\Rightarrow\widehat{AHM}=\widehat{KHM}\)
Mà tia HM nằm giữa 2 tia HA, HC nên HM là tia phân giác của \(\widehat{AHC}\)
Mình chỉ gạch ý thôi. Mong bạn hiểu cách làm bài. Chúc bạn học tốt.