Cho đa thức H(x) = \(2x^2+1\)
Chứng tỏ rằng đa thức H(x) không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x^4+2x^3+2x^2+1
=x^2(x^2+2x+2)+1
Ta thấy x^2(x^2+2x+2)> hoặc =0 nên
x^2(x^2+2x+2)+1>0 nên ko có nghiệm
Chúc học tốt
cộng H(x)với G(x)
H(x)+G(x)=(x^3-2x^2+3x-1)+(-x^3+3x^2-3x+3)
=x^3-2x^2+3x-1-x^3+3x^2-3x+3
=x^2+2
mà x^2 lớn hơn hoặc bằng 0
nên x^2+2 lớn hơn 0
suy ra đa thức H(x) và G(x) không có nghiệm chung nào
\(H\left(x\right)=2^{x^2}+5^{x^3}+3-1-5^{x^3}=2^{x^2}+2>0\forall x\)
=>H(x) ko có nghiệm
mk giải cách lớp 7:
A(x) = x4 + 2x2 + 1
vì \(x^4\ge0\) với mọi x
\(2x^2\ge0\) với mọi x
=> \(x^4+2x^2+1\ge1>0\)
=> đa thức A(x) ko có nghiệm
cách lớp 8. bạn đặt ẩn phụ la x2. đưa nó về bậc 2. rồi dùng đen ta là ra: nó sẽ ra đen ta <0 thì đa thức trên vô nghiêm. dễ mà. mà bạn biết đen ta rồi chứ. Đen ta = b2-4ac. hoac đen ta phẩy= b2-ac. 100% là ra
Ta có \(x^4+2x^2+1=\left(x^2+1\right)^2\)
Ta thấy \(\left(x^2+1\right)^2>0\forall x\)
\(\Rightarrow\)đa thức trên không có nghiệm
Vậy ...
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
Vì \(H\left(x\right)=2x^2+1\ge1>0\)
Nên đa thức trên vô nghiệm
\(2x^2+1\ge1\forall x\)
Vậy đa thức H(x) vô nghiệm