K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Ta có : \(A=xy+\frac{1}{xy}=\left(16xy+\frac{1}{xy}\right)-15xy\)

Áp dụng bất đẳng thức Cauchy , ta có :

\(16xy+\frac{1}{xy}\ge2.\sqrt{16xy.\frac{1}{xy}}=8\)

Suy ra \(A\ge8-15xy\)

Ta lại có  \(xy\le\frac{\left(x+y\right)^2}{4}\)

<=> \(15xy\le\frac{15.1}{4}=\frac{15}{4}\)

<=> \(-15xy\ge\frac{15}{4}\)

Suy ra \(A\ge8-\frac{15}{4}=\frac{17}{4}\)

Đẳng thức xảy ra <=> x = y = \(\frac{1}{2}\)

30 tháng 1 2017

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)

Dấu "=" xảy ra khio x=y=1/2

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

12 tháng 3 2017

???????

12 tháng 3 2017

\(A=\frac{1}{x^2+y^2}+\frac{5}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{9}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{9}{2\left(\frac{x+y}{2}\right)^2}\)

nên  \(A\ge4+9.2=22\)

Dấu bằng xảy ra khi và chỉ khi  \(x=y=\frac{1}{2}\)

27 tháng 6 2016

bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng

28 tháng 6 2016

bài 1 sai đề

28 tháng 6 2016

3. 

P=(x+y)(x^2-xy+y^2)+xy

P=x^2+y^2-xy+xy

P=x^2+y^2

15 tháng 2 2017

Đặt xy = a .

Ta có x + y = 1  => x^3 + y^3 = 1 - 3xy ( mũ 3 hai vế ) 

* Ta có a = xy \(\le\) \(\frac{\left(x+y\right)^2}{4}\) = \(\frac{1}{4}\) 
=> P = \(\frac{1}{1-3xy}\)+\(\frac{1}{xy}\)= \(\frac{1-2a}{a-3a^2}\)

Để tìm min P thì ta tìm max \(\frac{1}{P}\)= Q <=> Q =  \(\frac{a-3a^2}{1-2a}\)

  Đặt A=(a-3a^2 )/(1-2a)
<=> A-2Aa=a-3a^2
<=> 3a^2 -a(1+2A)+A=0
Giải delta >=0 là 1 biểu thức theo A
từ đó tìm được min và max A