K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

4,6 x y + y + 4,4 x y = 2017

4,6 x y + y x 1 + 4,4 x y = 2017

( 4,6 + 1 + 4,4 ) x y = 2017

10 x y = 2017

y = 2017 : 10 

y = 201,7

10 tháng 5 2018

4,6 x y +y +4,4 x y =2017

  (4,6 + 4,4 ) x y + y = 2017

        9 x y        + 1 x y = 2017

      (9 + 1 ) x y           =2017

       10 x y                 = 2017

               y               =  2017 : 10

             y              =         201,7

30 tháng 4 2018

\(4,6\times y+y+4,4\times y=2017\)

\(y\text{​​​}\times\text{​​}\left(4,6+1+4,4\right)=2017\)

\(y\text{ }\times10=2017\)

\(y\text{ }=2017:10=201,7\)

30 tháng 4 2018

4,6 x y + y +4,4 x y = 2017

=> (4,6+4,4)*y=2017

=. 9*y=2017

=> y= \(\frac{2017}{9}\)

16 tháng 12 2022

y x 1,2 + y x 4,6 + y x 5,2 = 18

y x ( 1,2 + 4,6 + 5,2 )        = 18 

y x 11                                = 18

y                                       = 18 : 11

y                                       =  \(\dfrac{18}{11}\)

16 tháng 12 2022

Y x 1,2 + Y x 4,6 + Y x 5,2 = 18

          Y x (1,2 + 4,6 + 5,2) = 18

                                Y x 11 = 18

                                        Y = 18 : 11

                                        Y = \(\dfrac{18}{11}\)

26 tháng 4 2022

`y xx 3,2 + 6,8 xx y = 68,84 + 4,6`

`y xx ( 3,2 + 6,8 ) = 73,44`

`y xx 10 = 73,44`

`y = 73,44 : 10`

`y = 7,344`

y x (3,2 + 6,8) = 73,44

y x 10 = 73,44

y = 73,44 : 10

y = 7,344

18 tháng 12 2018

4,6 x y + 6,4 x y = 0,32

=>y x (4,6 + 6,4 )= 0,32

=>y x 11=0.32

=>y=0.32:11

=>y=8/275

18 tháng 12 2018

xem trên mạng nhé 

22 tháng 11 2017

đề sai rùi

23 tháng 11 2017

\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)

Điều kiện: \(x,y\ge0\)

Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ

Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)

\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)

\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)

Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)

\(\Leftrightarrow a=b\)

\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)

\(\Leftrightarrow x=y\)

Thế vô (1) ta được:

\(2x^{2017}=1\)

\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)

20 tháng 12 2019

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)

Xét \(x=-y\)

Ta có:

\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)

\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)

\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)

Một cái chặt hơn nè:))

CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.