K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

Chứng minh: chia hết cho 24

+) Chứng minh a2 - 1 chia hết cho 3 ( đã chứng minh)

+) Chứng minh a- 1 chia hết cho 8

a2 - 1 = (a - 1)(a+ 1) Vì a là số nguyên tố > 3 nên a lẻ => a - 1 và a + 1 chẵn

Ta có a - 1 và a+ 1 là 2 số nguyên liên tiếp nên đặt a - 1 = 2k ; a + 1 = 2k + 2

=> a- 1 = 2k.(2k+2)  = 4.k.(k+1) 

Vì k; k+ 1 là 2 số nguyên liên tiếp nên k.(k+1) chia hết cho 2 =>a2 - 1 = 4k(k+1) chia hết cho 4.2 = 8

Vậy a-1 chia hết cho cả 3 và  8 nên chia hết cho 24

22 tháng 12 2015

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

4 tháng 3 2021

Ta có a là số nguyên tố lớn hơn 3 => a là số lẻ

=> a-1 chia hết cho 2 => (a-1)(a+4) chia hết cho 2 (1)

Lại có a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3

Nếu a chia 3 dư 1 => a-1 chia hết cho 3 => (a-1)(a+4) chia hết cho 3

Nếu a chia 3 dư 2 => a + 4 chia hết cho 3 => (a-1)(a+4) chia hết cho 3

=> (a-1)(a+4) chia hết cho 3 (1)

Từ (1) và (2) do 2 và 3 là 2 số nguyên tố cùng nhau => (a-1)(a+4) chia hết cho 6

4 tháng 3 2021

a là số nguyên tố lớn hơn 3 nên a là số lẻ

Do đó, a - 1 là số chẵn ⇒ (a - 1)⋮2 (1)

- Nếu :

a chia 3 dư 1 suy ra: (a-1) chia hết cho 3

a chia 3 dư 2 suy ra: (a+4) chia hết cho 3

Suy ra: (a-1)(a+4) chia hết cho 3(2)

Từ (1)(2) suy ra điều phải chứng minh.

 

27 tháng 4 2020

Vì a là số nguyên tố lớn hơn 3 nên a có dạng 3k+1; 3k+2

(a+1)(a+6) chia hết cho 6 nên (a+2)(a+6) sẽ chia hết cho 2 và 3

Vì a là số nguyên tố lớn hơn 3 nên a là số lẻ => (a-1) chia hết cho 2

Nếu a=3k+1 thì (a-1)(a+6) = (3k+1-1)(3k+1+6) = 3k. (3k+7) mà 3k\(⋮\)3 nên 3k(3k+7) \(⋮\)

Nếu a = 3k+2 thì (a-1)(a+6) = (3k+2-1)(3k+2+6)= (3k+1)(3k+8)= 3k(8+1) =3k+9 = 3(k+3) \(⋮\)3

Vậy...

27 tháng 4 2020

ChjmLjnhSunz  bổ sung thêm điều kiện của k nhé!

14 tháng 1 2018

a nguyên tố > 3 nên a lẻ => a-1 chia hết cho 2

=> (a-1).(a+4) chia hết cho 2 (1)

a nguyên tố > 3 nên a ko chia hết cho 3

+, Nếu a chia 3 dư 1 => a-1 chia hết cho 3 => (a-1).(a+4) chia hết cho 3

+, Nếu a chia 3 dư 2 => a+4 chia hết cho 3 => (a-1).(a+4) chia hết cho 3

Vậy (a-1).(a+4) chia hết cho 3 (2)

Từ (1) và (2) => (a-1).(a+4) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

Tk mk nha

Vào câu hỏi tương tự đi bạn