K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2022

a, BA = BD (gt)

=> Δ ABD cân tại B (đn)

góc ABC = 60 (gt)

=> Δ ABD đều (dấu hiệu)

b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)

Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)

từ (1) và (2) => Δ IBC cân tại I

c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ 

=> \(\widehat{AID}\)=120 độ

=> \(\widehat{DIC}\)=60 độ 

Xét Δ BIA và Δ CID có:

 DI=AI (Δ BIA=Δ BID)

\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ

IB=IC(vìΔ IBC cân)

=>ΔBIA=Δ CID(c.g.c)

=> BA=CD mà BA=BD=> BD=DC

=> D là trung điểm của BC

d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm

Áp dụng định lí py-ta-go ta có:

BC2=AB2+AC2

=> AC2=BC2−AB2

=> AC2=144 - 36=108 cm

=> AC= \(\sqrt{108}\)(cm)

vậy BC=12 cm; AC= \(\sqrt{108}\)cm

5 tháng 5 2019

a, BA = BD (gt)

=> tam giác ABD cân tại B (đn)

góc ABC = 60 (gt)

=>  tam giác ABD đều (dấu hiệu)

5 tháng 5 2019

b) ta có \(\widehat{A}\)=90 độ và \(\widehat{B}\)=60 độ => \(\widehat{C}\)=30 độ (1)

Mà BI là p/g của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)

từ (1) và (2) => t.giác IBC cân tại I

c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ 

=> \(\widehat{AID}\)=120 độ

=> \(\widehat{DIC}\)=60 độ 

xét t.giác BIA và t.giác CID có:

 DI=AI(t.giác BIA=t.giác BID)

\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ

IB=IC(vì t.giác IBC cân)

=> t.giác BIA=t.giác CID(c.g.c)

=> BA=CD mà BA=BD=> BD=DC

=> D là trung điểm của BC

c) vì AB=1/2 BC nên BC=12 cm

áp dụng định lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

=> \(AC^2\)=\(BC^2-AB^2\)

=> \(AC^2\)=144 - 36=108 cm

=> AC= \(\sqrt{108}\)(cm)

vậy BC=12 cm; AC= \(\sqrt{108}\)cm

A B C D I 6cm

a: góc C=180-80-60=40 độ

góc A>góc B>góc C

=>BC>AC>AB

b: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

c: Xét ΔDMC và ΔDAH có

góc DMC=góc DAH

DM=DA

góc MDC=góc ADH

=>ΔDMC=ΔDAH

=>DC=DH