\(\frac{14n+17}{21n+25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN (14n+17;21n+25) = a
Thì 14n+17 chia hết cho a => (14n+17)*3=42n+51 chia hết cho a (1)
Và 21n+25 chia hết cho a => (21n+25)*2=42n+50 chia hết cho a (2)
Từ (1) và (2) suy ra [(42n+51) - (42n+50)] chia hết cho a Hay 1 chia hết cho a => a= 1
UCLN (14n+17;21n+25) = 1 thì phân số B là tối giản - ĐPCM.
Gọi \(d=ƯC\left(14n+17;21n+25\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(14n+17;21n+25\right)=1\)
hay phân số \(B=\dfrac{14n+17}{21n+25}\) là phân số tối giản(Đpcm)
a. Để a tối giản thì UCLN của 12n+1 và 30n+2 là 1
Gọi UCLN của 12n+1 và 30n+2 là d
Ta có
\(12n+1⋮d;30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=\left(60n+5\right)-\left(60n+4\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy A là phân số tối giản
b
Gọi UCLN của 14n+17 và 21n+25 là d
Ta có
\(14n+17⋮d;21n+25⋮d\)
\(\Rightarrow3\left(14n+17\right)-2\left(21n+25\right)=\left(42n+51\right)-\left(42n+50\right)=1⋮d\)
\(\Rightarrow d=1\)
vậy B là phân số tối giản
Từ đây mik rút ra công thức tổng quát nhé!
Nếu chỉ cần tìm được các số tự nhiên a, b, c, e, g sao cho
\(\left|a\left(bn+c\right)-d\left(en+g\right)=1\right|\)
Tức là \(ab=de;\left|ac-dg\right|=1\)Thì
Chúng ta sẽ có \(\frac{bn+c}{en+g}\)và\(\frac{en+g}{bn+c}\)là các phân số tối giản
Gọi d là ucln(14n+17 và21n+25 )
hay 14n+17 và21n+25chia hết d
3(14n+17)và 2(21n+25)
hay42n+51 chia hết d(1)
42n+50 chia hết d(2)
từ 1 và 2 =>42n+51- 42n+50 chia hết d
=>1 chia hết d
=>d=1
đúng cái
gọi ƯCLN ( 14n +17: 21n + 25) là d
ta có : 14n + 17 chia hết d = 7+ ( 14n + 17) = 21n + 24 chia hết cho d
21n +25 chia hết d = 0 + (21n +25) = 21n +25 chia hết cho d
=> 21n + 25 - 21n -24 chia hết cho d
=> 1 chia hết cho d
=> d=1
vậy ƯCLN (14n +17 ; 21n + 25) =1
=> PS TRÊN LÀ PHÂN SỐ TỐI GIẢN
a) Gọi UCLN ( 12n+1; 30n+2) là d
ta có: 12n +1 chia hết cho d => 5.(12n+1) chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 2.(30n+2) chia hết cho d => 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d => 1 chia hết cho d
=> A = 12n+1/30n+2 là phân số tối giản
b) Gọi UCLN(14n+17;21n+25) là d
ta có: 14n + 17 chia hết cho d => 3.(14n+17) chia hết cho d => 42n + 51 chia hết cho d
21n + 25 chia hết cho d => 2.(21n+25) chia hết cho d => 42n + 50 chia hết cho d
=> 42n + 51 - 42n - 50 chia hết cho d => 1 chia hết cho d
=> B = 14n+17/21n+25 là phân số tối giản
a) Gọi ƯCLN của 12n +1 và 30n+2 là d
Suy ra 12n+1 chia hết cho d , 30n+2 chia hết cho d
5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d
60n +5 chia hết cho d và 60n + 4 chia hết cho d
Suy ra 60n+5 - (60n +4) chia hết cho d
Suy ra : 1 chia hết cho d
Suy ra d thuộc tập hợp ước của 1
Suy ra d thuộc {-1;1}
Vậy \(\frac{12n+1}{30n+2}\)tối giản
b) Gọi ƯCLN của 14n+17 và 21n+25 là a
Ta có : 14n+17 chia hết cho a và 21n+25 chia hết cho a
Suy ra: 3(14n+17) chia hết cho a và 2(21n+25) chia hết cho a
42n+51 chia hết cho a và 42n +50 chia hết cho a
Suy ra : 42n+51 - ( 42n+50) chia hết cho a
Suy ra: 1 chia hết cho a
Suy ra : a thuộc tập hợp ước của 1 ={1;-1}
Vậy \(\frac{14n+27}{21n+25}\)tối giản
câu hỏi đâu bạ và bạn viết lại cái đề bà nhé. mk nhìn vào ko hiẻu
a, Bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/62013.html
b, Gọi d là ƯCLN(tử;mẫu)
=> \(\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}}\)=> \(\hept{\begin{cases}3\left(14n+17\right)⋮d\\2\left(21n+25\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}\)
Hay \(4n+51-42n-50⋮d\)
=> \(1⋮d\)
Hay ƯCLN(tử;mẫu)=1 Vậy phân số trên là p/s tối giản.
a,
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
a, Gọi UCLN ( 12n + 1 và 30n + 2 ) là d
=> 12n + 1 chia hết cho d
30n + 2 chia hết cho d
Ta có :
12n + 1 = 5 ( 12n + 1 ) = 60n + 5 chia hết cho d
30n + 2 = 2 ( 30n + 2 ) + 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
= 1 chia hết cho d
=) d = 1
=) \(\frac{12n+1}{30n+2}\)là phân số tối giản
Vậy ...
Phần b làm tương tự ~~
Gọi ƯCLN (12n+1;30n+2)=d (d thuộc N*,d lớn nhất)
ta có: 12n+1 chia hết cho d và 30n+2 chia hết cho d
suy ra: 5.(12n+1) chia hết cho d và 2.(30n+2) chia hết cho d
suy ra: 60n+5 chia hết cho d và 60n+4 chia hết cho d
suy ra: (60n+5)-(60n+4) chia hết cho d
suy ra: 1 chia hết cho d; suy ra d=1
vì ƯCLN (12n+1 và 30n+2)=1
suy ra phân số 12n+1/30n+2 là phân số tối giản
vậy 12n+1/30n+2 là phân số tối giản
a, Gọi UCLN(12n+1,30n+2) là d
Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d
=> 60n + 5 - (60n + 4) chia hết cho d
=> 1 chia hết cho d => d = {1;-1}
Vậy A là phân số tối giản
b, Gọi UCLN(14n + 17,21n + 25) là d
Ta có: 14n + 17 chia hết cho d => 3(14n + 17) chia hết cho d => 42n + 51 chia hết cho d
21n + 25 chia hết cho d => 2(21n + 25) chia hết cho d => 42n + 50 chia hết cho d
=> 42n + 51 - (42n + 50) chia hết cho d
=> 1 chia hết cho d => d = {1;-1}
Vậy B là phân số tối giản