p + 2q = 1
2p - q = -3
giải hệ dùm mk vs mk dang cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, x2 +y2+z2 +2x-4y-6z+14=0
<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0
<=> (x+1)2+(y-2)2+(z-3)2=0
=>(x+1)2=(y-2)2=(z-3)2=0
=>x+1=y-2=z-3=0
=> x=-1; y=2; z=3
c, 2x2+y2-6x-4y+2xy+5=0
<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0
<=> (x+y-2)2+(x-1)2=0
=> (x+y-2)2=(x-1)2=0
=>x+y-2=x-1=0
=>x=1; y=1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a} = \frac{a+b+c}{b+c+a}=1\) (tính chất của dãy tỉ số bằng nhau)
=> a=b=c
chúc bn học giỏi
ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a=b=c\)
(đkxđ: \(c\ge0,c\ne4\))
Ta có \(A=\left(\frac{\sqrt{c}}{\sqrt{c}+2}-\frac{\sqrt{c}}{\sqrt{c}-2}+\frac{4\sqrt{c}-1}{c-4}\right).\left(\sqrt{c}+2\right)\)
\(=\frac{\sqrt{c}\left(\sqrt{c}-2\right)-\sqrt{c}\left(\sqrt{c}+2\right)+4\sqrt{c}-1}{\left(\sqrt{c}+2\right)\left(\sqrt{c}-2\right)}\left(\sqrt{c}+2\right)\)
\(=\frac{c-2\sqrt{c}-c-2\sqrt{c}+4\sqrt{c}-1}{\left(\sqrt{c}-2\right)}\)
\(=\frac{1}{2-\sqrt{c}}\)
\(\left(x+1\right)^3+\left(x-2\right)^3-2x^2\left(x-1,5\right)=3\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-6x^2+12x-8-2x^3+3x^2=3\)
\(\Leftrightarrow15x=10\Leftrightarrow x=\dfrac{2}{3}\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x+3y-z-5}{9}=\frac{x+1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) có 2x + 3y - z = 50
\(\Rightarrow\frac{50-5}{9}=5=\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\hept{\begin{cases}x-1=10\\y-2=15\\z-3=20\end{cases}\Rightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}}\)
Trả lời:
Ta có:\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)\(=\frac{2x+3y-z-5}{9}\)(Tính chất dãy tỉ số bẳng nhau)
Mà\(2x+3y-z=50\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}2x-2=20\\3y-6=45\\z-3=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=22\\3y=51\\z=23\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
Vậy\(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
Hok tốt!
Vuong Dong Yet
\(100^3-99^1+1\)
\(=100^3-\left(100-1\right)^3+1\)
\(=100^3-\left[100^3-3.100^2+3.100-1\right]+1\)
\(=3.100^2-3.100+2\)
\(=29702\)
\(\hept{\begin{cases}p+2q=1\\2p-q=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}p=1-2q\\2.\left(1-2q\right)-q=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}p=1-2q\\2-4q-q=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}p=1-2q\\-5q=-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}p=1-2.1=-1\\q=1\end{cases}}\)
Vậy \(\hept{\begin{cases}p=-1\\q=1\end{cases}}\)