K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

\(M=2x^2+5y^2-2xy+2y+2x\)

\(2M=4x^2+10y^2-4xy+4y+4x\)

\(2M=\left(4x^2-4xy+y^2\right)+9y^2+4x+4y\)

\(2M=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(9y^2+6y+1\right)-2\)

\(2M=\left(2x-y+1\right)^2+\left(3y+1\right)^2-2\)

Do :  \(\left(2x-y+1\right)^2\ge0\forall x;y\)

         \(\left(3y+1\right)^2\ge0\forall y\)

\(\Rightarrow2M\ge-2\)

\(\Leftrightarrow M\ge-1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y+1=0\\3y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-1}{3}\end{cases}}\)

Vậy ....

3 tháng 5 2018

Mình chưa hiểu ở dòng thứ 3

27 tháng 5 2021

\(M=5x^2+y^2-2x+2y+2xy+2004\)

\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)

\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)

\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y

=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(M_{min}=2002\)

27 tháng 5 2021

Dòng 4 toi viết nhầm nha, là +2002 

AH
Akai Haruma
Giáo viên
14 tháng 12 2023

Lời giải:

$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$

$=(x+y)^2+x^2+y^2-6x-6y+11$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$

$\Leftrightarrow x=y=1$

11 tháng 2 2021

M = 2x2 + 5y2 - 2xy + 1

=> 2M = 4x2 + 10y2 - 4xy + 2

           = (4x2 - 4xy + y2) + 9y2 + 2 

           = (4x - y)2 + (3y)2 + 2 

=> M = \(\frac{\left(4x-y\right)^2}{2}+\frac{\left(3y\right)^2}{2}+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}4x-y=0\\3y=0\end{cases}}\Leftrightarrow x=y=0\)

Vậy Min M = 1 <=> x = y = 0

DD
27 tháng 9 2021

\(A=2x^2+2xy+y^2-2x+2y+2\)

\(=x^2-4x+4+x^2+y^2+1+2x+2y+2xy-3\)

\(=\left(x-2\right)^2+\left(x+y+1\right)^2-3\ge-3\)

Dấu \(=\)khi \(\hept{\begin{cases}x-2=0\\x+y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}\).

25 tháng 12 2020

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

NV
20 tháng 4 2023

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+x^2+6x+9+1978\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(x+3\right)^2+1978\)

\(=\left(x-y+1\right)^2+\left(x+3\right)^2+1978\ge1978\)

\(A_{min}=1978\) khi \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

NV
19 tháng 8 2021

\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)

\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)