\(\left(x^2+4\right)^2+5.x.\left(x^2+4\right)+4.x^2=0\) 0
giai pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt (x^2 - 5x) = a thì ta có
a^2 + 10a + 24 = 0
<=> (a + 4)(a + 6) = 0
Làm nốt
b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680
<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680
<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680
Đặt x^2 - 11x + 28 = a thì ta có
a(a + 2) = 1680
<=> (a - 40)(a + 42) = 0
Làm nốt
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) \(\left(x^2+2x+2\right)\left(x^2+2x+3\right)=0\)
<=> \(\orbr{\begin{cases}x^2+2x+2=0\\x^2+2x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+1\right)^2+1=0\left(vl\right)\\\left(x+1\right)^2+2=0\left(vl\right)\end{cases}}\)
=> pt vô nghiệm
b) \(\left(x+3\right)\left(x-3\right)\left(x^2-11\right)+3=2\)
<=> \(\left(x^2-9\right)\left(x^2-11\right)+1=0\)
<=> \(\left(x^2-9\right)^2-2\left(x^2-9\right)+1=0\)
<=> \(\left(x^2-9-1\right)^2=0\)
<=> \(x^2-10=0\)
<=> \(x=\pm\sqrt{10}\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
<=> \(\left(x+4-1\right)^4+\left(x+4+1\right)^4=2\)
Đặt x + 4 = a
<=> \(\left(a-1\right)^4+\left(a+1\right)^4=2\)
<=> \(a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=2\)
<=> \(a^4+12a^2=0\)
<=> \(a^2\left(a^2+12\right)=0\)
<=> a = 0 (vì a2 + 12 > 0)
Vậy S = {0}
giải pt sau \(\left(\dfrac{x+1}{x-2}\right)^2-3\left(\dfrac{2x-4}{x-4}\right)^2+\dfrac{x+1}{x-4}=0\)
ĐKXĐ: \(x\ne\left\{2;4\right\}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)
Phương trình trở thành:
\(a^2-12b^2+ab=0\)
\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)
\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)
Bạn tự quy đồng và hoàn thành phần còn lại nhé
\(\left(x^2+4\right)^2+5x\left(x^2+4\right)+4x^2=0\)
\(\Leftrightarrow\) \(\left(x^2+4\right)^2+4x\left(x^2+4\right)+x\left(x^2+4\right)+4x^2=0\)
\(\Leftrightarrow\)\(\left(x^2+4\right)\left(x^2+4+4x\right)+x\left(x^2+4+4x\right)=0\)
\(\Leftrightarrow\)\(\left(x+2\right)^2\left(x^2+4+x\right)=0\)
\(\Leftrightarrow\)\(x+2=0\) (do x2 + x + 4 = (x + 0,5)2 + 3,75 > 0)
\(\Leftrightarrow\)\(x=-2\)
Vậy...