\(\frac{x^2}{25}\) + \(\frac{x^2}{9}\) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\ne\left\{-2;\pm5\right\}\)
\(\frac{x+9}{\left(x+2\right)\left(x-5\right)}-\frac{x+15}{\left(x+5\right)\left(x-5\right)}-\frac{1}{x+2}=0\)
\(\Leftrightarrow\frac{\left(x+9\right)\left(x+5\right)}{\left(x+2\right)\left(x^2-25\right)}-\frac{\left(x+15\right)\left(x+2\right)}{\left(x+2\right)\left(x^2-25\right)}-\frac{x^2-25}{\left(x+2\right)\left(x^2-25\right)}=0\)
\(\Leftrightarrow x^2+14x+45-\left(x^2+17x+30\right)-x^2+25=0\)
\(\Leftrightarrow-x^2-3x+40=0\Rightarrow\left[{}\begin{matrix}x=5\left(l\right)\\x=-8\end{matrix}\right.\)
Từ \(\frac{9-x}{7}+\frac{11-x}{9}=2\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-2=0\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-1-1=0\)
\(=>\left(\frac{9-x}{7}-1\right)+\left(\frac{11-x}{9}-1\right)=0\)
\(=>\frac{2-x}{7}+\frac{2-x}{9}=0=>\left(2-x\right).\left(\frac{1}{7}+\frac{1}{9}\right)=0\)
Vì \(\frac{1}{7}+\frac{1}{9}\) khác 0=>2-x=0=>x=2
Theo T/c dãy tỉ số=nhau:
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}\)\(=\frac{\left(x+y+z\right)+\left(16-25+9\right)}{9+16+25}=\frac{x+y+z}{50}\)
Thay x=2 vào \(\frac{x+16}{9}=>\frac{2+16}{9}=\frac{x+y+z}{50}=>\frac{x+y+z}{50}=2=>x+y+z=100\)
Vậy x+y+z=100
3) 2x3-1=15 <=> x3=16/2=8=23 => x=2
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}=\frac{x+y+z}{50}\)
=> \(\frac{x+16}{9}=\frac{x+y+z}{50}\)=> x+y+z=\(\frac{50\left(x+16\right)}{9}\)=\(\frac{50\left(2+16\right)}{9}=\frac{50.18}{9}=50.2=100\)
Vậy x+y+z=100
a) Ta có: \(a = 3,b = 4 \Rightarrow c = \sqrt {{3^2} + {4^2}} = 5\)
Vậy tiêu điểm của (E) là: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)
b) Ta có: \(a = 6;b = 5 \Rightarrow c = \sqrt {{6^2} + {5^2}} = \sqrt {61} \)
Vậy tiêu điểm của (E) là: \({F_1}\left( { - \sqrt {61} ;0} \right),{F_2}\left( {\sqrt {61} ;0} \right)\)
x1 = \(\frac{15\sqrt{34}}{34}\)
x2 = \(\frac{-15\sqrt{34}}{34}\)