Câu hỏi cho Nguyễn Thị Minh Thư
1) So sánh
a) \(\frac{1}{5}\)và\(\frac{7}{6}\)
b)\(\frac{3}{7}\)và\(\frac{4}{2}\)
2) Điền dấu >,<, =
a) 15.......45
b)21......3
c)5....4+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách này mình tự nghĩ
\(\hept{\begin{cases}A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\\B=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\end{cases}}\)
\(\Rightarrow A-B=\left(\frac{4}{7}-\frac{4}{7}\right)+\left(\frac{5}{7^3}-\frac{5}{7^3}\right)+\left(5-5\right)+\left(\frac{3}{7^2}-\frac{6}{7^2}\right)+\left(\frac{6}{7^4}-\frac{5}{7^4}\right)\)
\(\Rightarrow A-B=-\frac{3}{7^2}+\frac{1}{7^4}\)
\(\Rightarrow A-B=\frac{-3\times7^2}{7^4}+\frac{1}{7^4}\)
mà \(-3\times7^2< 1\Rightarrow\frac{1}{7^4}>\frac{-3\times7^2}{7^4}\Rightarrow B>A\)
\(a,4\frac{1}{2}< 4\frac{3}{4}\)
\(b,2\frac{4}{5}< 3\frac{1}{4}\)
\(c,7\frac{2}{9}>5\frac{2}{9}\)
\(d,13\frac{5}{6}< 13\frac{6}{7}\)
Nao Tomori
\(a,4\frac{1}{2}....4\frac{3}{4}\Rightarrow4\frac{1}{2}=\frac{13}{2};4\frac{3}{4}=\frac{19}{4}\)
\(=4\frac{1}{2}< 4\frac{3}{4}\)
\(b,2\frac{4}{5}....3\frac{1}{4}\Rightarrow2\frac{4}{5}=\frac{14}{5};3\frac{1}{4}=\frac{13}{12}\)
\(=2\frac{4}{5}>3\frac{1}{4}\)
\(c,7\frac{2}{9}....5\frac{2}{9}\Rightarrow7\frac{2}{9}=\frac{65}{9};5\frac{2}{9}=\frac{42}{9}\)
\(=7\frac{2}{9}>5\frac{2}{9}\)
\(d,13\frac{5}{6}....13\frac{6}{7}\Rightarrow13\frac{5}{6}=\frac{83}{6};13\frac{6}{7}=\frac{97}{7}\)
\(=13\frac{5}{6}< 13\frac{6}{7}\)
P/s: Quy đồng là bước trung gian nên mk ko ghi bước quy đồng nha
3)
3/5 + 3/7-3/11 / 4/5 + 4/7- 4/11
= 3.( 1/5 + 1/7 - 1/11)/4.(1/5+1/7-1/11)
= 3/4
1,
ta có B = 196+197/197+198 = 196/(197+198) + 197/(197+198)
196/197 > 196/197+198
197/198 > 197/197+198
=> A>B
a)
\(\begin{array}{l}\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right)\\ = \left( {\frac{{ - 3}}{7}} \right) + \frac{5}{6} - \frac{4}{7}\\ = \left[ {\left( {\frac{{ - 3}}{7}} \right) - \frac{4}{7}} \right] + \frac{5}{6}\\ =\frac{-7}{7}+\frac{5}{6}\\= - 1 + \frac{5}{6}\\ = \frac{{ - 1}}{6}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right)\\ = \frac{3}{5} - \frac{2}{3} - \frac{1}{5}\\ = (\frac{3}{5} - \frac{1}{5}) - \frac{2}{3}\\ = \frac{2}{5} - \frac{2}{3}\\ = \frac{6}{{15}} - \frac{{10}}{{15}}\\ = \frac{{ - 4}}{{15}}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{3}} \right) + 1} \right] - \left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{3}} \right) + 1 - \frac{2}{3} + \frac{1}{5}\\ = \left( {\frac{{ - 1}}{3} - \frac{2}{3}} \right) + 1 + \frac{1}{5}\\ = \frac{-3}{3}+1+\frac{1}{5}\\= - 1 + 1 + \frac{1}{5}\\ = \frac{1}{5}\end{array}\)
d)
\(\begin{array}{l}1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\\ = 1 + \frac{1}{3} + \frac{2}{3} - \frac{3}{4} - \left( {\frac{4}{5} + 1 + \frac{1}{5}} \right)\\=1+\frac{3}{3}-\frac{3}{4}-(\frac{5}{5}+1)\\ = 1 + 1 - \frac{3}{4} - (1+1)\\ = - \frac{3}{4}\end{array}\).
a) \(A=\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.\left(2^2.5\right)^4}{5^{2^5}.\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{\left(5^{10}:5^8\right).\left(2^{10}:2^8\right)}=\frac{1}{5^2.2^2}=\frac{1}{25.4}=\frac{1}{100}\)
b) \(B=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)\(=\frac{2^3+2^3}{1}=\frac{8+8}{1}=16\)
c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\)
\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+..........+\frac{1}{2^{99}}\)
\(\Rightarrow2C-C=\left(1+\frac{1}{2}+\frac{1}{2^2}+.........+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\right)\)
\(\Rightarrow C=1-\frac{1}{2^{100}}\)
d) \(D=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{100}}\)
\(\Rightarrow5D=5+1+\frac{1}{5^2}+\frac{1}{5^3}+...........+\frac{1}{5^{101}}\)
\(\Rightarrow5D-D=\left(5+1+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{101}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+..........+\frac{1}{5^{100}}\right)\)
\(\Rightarrow4D=5-\frac{1}{5^{101}}\)
\(\Rightarrow D=\frac{5-\frac{1}{5^{101}}}{4}\)
a) \(A=\frac{5^4x20^4}{25^5x4^5}=\frac{5^4x\left(2^2x5\right)^4}{\left(5^2\right)^5x\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{5^2x2^2}=\frac{1}{25.4}=\frac{1}{100}\)
b) \(B=\frac{2^{30}x5^7+2^{13}x5^{27}}{2^{27}x5^7+2^{10}x5^{27}}=\frac{2^{13}.5^7.\left(2^{17}+5^{20}\right)}{2^{10}.5^7.\left(2^{17}+5^{20}\right)}=2^3=8\)
c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\)
\(C=1-\frac{1}{2^{100}}\)
phần d bn lm tương tự như phần c nha!
1
1/5<7/6
3/7<4/2
2
15<45
21>3
5=4+1
1)
a) Do 5/5 = 1
=> 1/5 < 1
Do 6/6 = 1
=> 7/6 > 1
=> 7/6 > 1/5
b) Như trên ta có : 3/7 < 1
4/2 > 1
=> 4/2 > 3/7
2)
a ) <
b) >
c) =