cho tam giác ABC nhọn AB<AC , ba đg cao AD, BE,CF cắt nhau tại H
a)c/m tam giác CEH đồng dạng tam giác CFA
b) c/m HF.HC=HE.HB
c) c/m góc FEH = góc FCD
d) gọi I là giao điểm Ad và EF. c/m IF/IH=CF/CE
PS:*Mấy a chị giúp e câu c . d với mai e thi rồi em cảm mơn tr á <3
cau c cm tg feh dong dang voi tg bhc do co goc fhe bang bhc(dd) va co fh/bh=he/hc vi fh/he= bh/hc do tg bfh dong dang hec
a) Xét \(\Delta CEH\)và \(\Delta CFA\)có:
\(\widehat{CEH}=\widehat{CFA}=90^0\)
\(\widehat{ACF}\) chung
suy ra: \(\Delta CEH~\Delta CFA\) (g.g)
b) Xét \(\Delta FHB\)và \(\Delta EHC\)có:
\(\widehat{HFB}=\widehat{HEC}=90^0\)
\(\widehat{FHB}=\widehat{EHC}\)(đối đỉnh)
suy ra: \(\Delta FHB~\Delta EHC\) (g.g)
\(\Rightarrow\)\(\frac{FH}{EH}=\frac{HB}{HC}\) \(\Rightarrow\)\(FH.HC=HB.HE\)
c) \(\frac{FH}{EH}=\frac{HB}{HC}\)(cmt) \(\Rightarrow\)\(\frac{FH}{HB}=\frac{EH}{HC}\)
Xét \(\Delta HFE\)và \(\Delta HBC\)có:
\(\frac{FH}{HB}=\frac{EH}{HC}\)
\(\widehat{EHF}=\widehat{CHB}\) (dd)
suy ra: \(\Delta HFE~\Delta HBC\)
\(\Rightarrow\)\(\widehat{FEH}=\widehat{BCH}\)