K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

cau c cm tg feh dong dang voi tg bhc do co goc fhe bang bhc(dd) va co fh/bh=he/hc vi fh/he= bh/hc do tg bfh dong dang hec

26 tháng 4 2018

a)  Xét  \(\Delta CEH\)và    \(\Delta CFA\)có:

       \(\widehat{CEH}=\widehat{CFA}=90^0\)

        \(\widehat{ACF}\)  chung

suy ra:    \(\Delta CEH~\Delta CFA\)  (g.g)

b)   Xét  \(\Delta FHB\)và    \(\Delta EHC\)có:

      \(\widehat{HFB}=\widehat{HEC}=90^0\)

       \(\widehat{FHB}=\widehat{EHC}\)(đối đỉnh)

suy ra:   \(\Delta FHB~\Delta EHC\) (g.g)

\(\Rightarrow\)\(\frac{FH}{EH}=\frac{HB}{HC}\) \(\Rightarrow\)\(FH.HC=HB.HE\)

c)   \(\frac{FH}{EH}=\frac{HB}{HC}\)(cmt)    \(\Rightarrow\)\(\frac{FH}{HB}=\frac{EH}{HC}\)

Xét  \(\Delta HFE\)và   \(\Delta HBC\)có:

          \(\frac{FH}{HB}=\frac{EH}{HC}\)

        \(\widehat{EHF}=\widehat{CHB}\) (dd)

suy ra:   \(\Delta HFE~\Delta HBC\)

\(\Rightarrow\)\(\widehat{FEH}=\widehat{BCH}\)

24 tháng 4 2022

c) -△AEF và △ABC có: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(△ABE∼△ACF), \(\widehat{BAC}\) chung.

\(\Rightarrow\)△AEF∼△ABC (c-g-c) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\).

-△MFB và △MEC có: \(\widehat{FMB}=\widehat{EMC}\) , \(\widehat{MFB}=\widehat{MEC}=90^0\)

\(\Rightarrow\)△MFB∼△MEC (g-g) \(\Rightarrow\dfrac{MF}{ME}=\dfrac{MB}{MC}\).

-△MEF và △MCB có: \(\dfrac{MF}{MB}=\dfrac{ME}{MC}\left(\dfrac{MF}{ME}=\dfrac{MB}{MC}\right),\widehat{EMF}=\widehat{CMB}\)

\(\Rightarrow\)△MEF∼△MCB (c-g-c) \(\Rightarrow\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)

\(\dfrac{AK}{AD}.\dfrac{AE}{AC}=\dfrac{S_{AKE}}{S_{ADC}}=\dfrac{S_{AFK}}{D_{ADB}}=\dfrac{S_{AKE}+S_{AFK}}{S_{ADC}+S_{ADB}}=\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)

\(\dfrac{MK}{MD}.\dfrac{AE}{AC}=\dfrac{S_{MEK}}{S_{MDC}}=\dfrac{S_{MFK}}{S_{MDB}}=\dfrac{S_{MEK}+S_{MFK}}{S_{MDC}+S_{MDB}}=\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)

\(\Rightarrow\dfrac{AK}{AD}=\dfrac{MK}{MD}\Rightarrow AK.MD=MK.AD\)

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

Xét ΔFBH vuông tại F và ΔFCA vuông tại F có

góc FBH=góc FCA

=>ΔFBH đồng dạng vơi ΔFCA

=>FH/FA=BH/AC

=>FH*AC=BH*FA

b: Xét tứ giác BHCK có

I là trung điểm chung của BC và HK

=>BHCK là hình bình hành

=>CK//BH

=>CK vuông góc AC

=>AK là đường kính của (O)

Xet ΔAKC vuông tại C và ΔAHF vuông tại F có

góc AKC=góc AHF(=góc ABD)

=>ΔAKC đồng dạng với ΔAHF

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F co

góc A chung

=>ΔAEB đồng dạng với ΔAFC

b: ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2