Vì đa thức m2+4 nhận số -1 làm nghiệm nên ta có
m2.(-1)+4 = 0
Giải tiếp hộ mình với ạ :(((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không dùng cũng được, nhưng mà lớp 9 là có học Vi-ét mà bạn :v
\(x^2-2\left(m-4\right)x+m^2+m+3=0\left(1\right)\)
\(\Delta=b^2-4ac=\left[-2\left(m-4\right)\right]^2-4\left(m^2+m+3\right)\)
\(=4\left(m^2-8m+16\right)-4m^2-4m-12\)
\(=4m^2-32m+64-4m^2-4m-12\)
\(=-36m+52\)
Pt \(\left(1\right)\) có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow-36m+52=0\)
\(\Leftrightarrow-36m=-52\\ \Leftrightarrow m=\dfrac{13}{9}\)
Vậy ...
Do x=-1 là nghiệm của đa thức, nên:
f(-1)=a.(-1)2+b.(-1)-2=0\(\Rightarrow\)a-b-2=0\(\Rightarrow a-b=2\)
Lời giải:
PT $\Leftrightarrow x(m-2)=m^2-4$
a) Để pt nhận $1$ là nghiệm thì $1(m-2)=m^2-4$
$\Leftrightarrow m-2=m^2-4=(m-2)(m+2)$
$\Leftrightarrow (m-2)(m+2-1)=0$
$\Leftrightarrow (m-2)(m+1)=0\Rightarrow m=2$ hoặc $m=-1$
b) Để pt có nghiệm thì:
\(\left[\begin{matrix} m-2\neq 0\\ m-2=m^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\neq 2\\ m=2\end{matrix}\right.\) hay $m\in\mathbb{R}$
Vậy pt có nghiệm với mọi $m\in\mathbb{R}$
c) Kết quả phần b suy ra không tồn tại giá trị của $m$ để pt vô nghiệm.
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
m2.(-1)+4 = 0
=>m2.(-1)=-4
=>m2=4
=>m=2 hoặc m=-2
Vậy...
chọn đúng nha bạn