K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Tìm x, y, z

20 tháng 3 2019

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

3 tháng 8 2018

\(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)->\left(a;b;c\right)\)

7 tháng 1 2020

+ \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=4\Rightarrow x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

+ \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)\)

+ Tương tự : \(y+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\); \(z+1=\left(\sqrt{x}+\sqrt{z}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

+ \(P=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}+\sqrt{z}\right)^2\left(\sqrt{z}+\sqrt{x}\right)^2}\cdot\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=2\)

25 tháng 8 2019

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)

\(\Leftrightarrow x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}=4\)

\(\Leftrightarrow2+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

Khi đó ta có : \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow x+1=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)

\(\Leftrightarrow x+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\)

Tương tự : \(y+1=\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\);

\(z+1=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

Ta lần lượt xét các biểu thức :

+) \(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\sqrt{\left[\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\right]^2}\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

+) \(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

Do đó ta có :

\(P=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\cdot\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(P=2\)

Vậy...