20^10 +1/20^10-1 va20^10 -1/20^10-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=20^10+1/20^10-1
A=20^10-1+2/20^10-1
A=20^10-1/20^10-1+2/20^10-1
A=1+2/20^10-1
B=20^10-1/20^10-3
B=20^10-3+2/20^10-3
B=20^10-3/20^10-3+2/20^10-3
B=1+2/20^10-3
Vì 20^10-1>20^10-3 nên 2/20^10-1<2/20^10-3
=>A<B
Ta có: \(20^{10}-1>20^{10}-3\)
\(\Rightarrow\frac{20^{10}-1}{20^{10}-3}>1\)
\(\Rightarrow\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=B\)
Vậy \(A>B\)
Ta thấy B=20^10-1/20^10-3 là phân số lớn hơn 1.
Theo tính chất nếu a/b>1 thì a/b > a+n/b+n ( n khác 0 )
Ta có : 20^10-1/20^10-3 > 20^10-1+2/20^10-3+2
<=> B > 20^10+1/20^10-3 = A
<=> B > A
Vậy B > A
Lời giải:
$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}$
$B=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}$
Vì $20^{10}-1> 20^{10}-3$
$\Rightarrow \frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}$
$\Rightarrow 1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}$
$\Rightarrow A< B$
\(A=\frac{2010+1}{2010-1}\)
\(A=1+\frac{2}{2010-1}>1\)
\(B=\frac{2010-1}{2010-3}\)
\(B=1-\frac{2}{2010-3}<1\)
Từ đó A > B
Ta thấy : A =\(\frac{20^{10}+1}{20^{10}-1}>1\)
Ta có : A=\(\frac{20^{10}+1}{20^{10}-1}>\frac{20^{10}+1-2}{20^{10}-1-2}=\frac{20^{10}-1}{20^{10}-3}=B\)
Vậy A > B
Ta thấy:\(A=\frac{20^{10}+1}{20^{10}-1}>1\)
Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}>\frac{20^{10}+1-2}{20^{10}-1-2}=\frac{20^{10}-1}{20^{10}-3}=B\)
Vậy \(A>B\)
mk dịch hộ bạn đề cho dễ làm,bạn xem xem mk dịch đúng ko nhé:
\(A=20^{10}+\left(\frac{1}{20}\right)^{10}-1\)
\(B=20^{10}-\left(\frac{1}{20}\right)^{10}-3\)
Ta có:
\(A=\frac{20^{10}+1}{20^{10}-1}\)
\(=\frac{20^{10}-1+2}{20^{10}-1}\)
\(=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}\)
\(=\frac{20^{10}-3+2}{20^{10}-3}\)
\(=1+\frac{2}{20^{10}-3}\)
Ta lại có:
\(20^{10}-1>20^{10}-3\)
\(\Rightarrow\)\(\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}\)
\(\Rightarrow\)\(1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}\)
Vậy ta kết luận A < B