K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

Vì \(\hept{\begin{cases}\left|x-y\right|\ge0\\\left|x-1\right|\ge0\end{cases}}\)\(\Rightarrow\left|x-y\right|+\left|x-1\right|\ge0\)

\(\Rightarrow\left|x-y\right|+\left|x-1\right|+2016\ge2016\).Nên GTNN của A là 2016 đạt được khi \(\hept{\begin{cases}\left|x-y\right|=0\\\left|x-1\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=y\\x=1\end{cases}}\)\(\Rightarrow x=y=1\)

Vậy với x=y=1 thì A có GTNN

Vì |x-y| \(\ge\)0 với mọi x,y;|x+1|\(\ge\)0 vs mọi x

=>A\(\ge\)2016 vs mọi x,y

=> A đạt giá trị nhỏ nhất khi:\(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=-1\end{cases}}\)

vậy với x=y=-1 thì A đạt giá trị nhỏ nhất là 2016

k mik nha

bài này mik từng làm rồi

-----Chúc hok tốt---------

Ta có : \(\left|x+1\right|\ge0\forall x\)

Nên : |x + 1| nhỏ nhất bằng 0 

<=> x + 1 = 0

=> x = -1

Lại có : \(\left|x-y\right|\ge0\forall x\)

Nên : |x - y| nhỏ nhất bằng 0 

=> x - y = 0 

mà x = -1

=> -1 - y = 0 

=> y = -1

Vậy A = |x - y| + |x + 1| + 2016 nhwor nhất bằng 0 + 0 + 2016

=> A nhở nhất bằng 2016 khi x = y = -1

14 tháng 4 2020

Ta có: |x-y| >=0 với mọi x,y

          |x+1| >=0 với mọi x,y

=> |x-y|+|x+1|+2016 >=2016 với mọi x,y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)

15 tháng 3 2017

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

24 tháng 3 2019

Bài 3: 

Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)

Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)

Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)

Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))

=> a = 9.1 = 9

Ta có: x2 = 9 và y2 = 1

=> x = -3, 3

     y = -1; 1

24 tháng 3 2019

Mình làm bài 4, bài 5 làm tương tự bài 4 nhé

Biết rằng: \(\left|A\right|\ge A\)

\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)

Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)

Với x = 5 thì A đạt gtnn là: 4

15 tháng 4 2018

Vì |x-y|\(\ge\)0 với mọi x,y

|x+1|\(\ge\)0 Với mọi x

\(\Rightarrow\)|x-y|+|x+1|\(\ge\)0 Với mọi x,y

\(\Rightarrow\)|x-y|+|x+1|+2016\(\ge\)2016 với mọi x,y

\(\Rightarrow\)A\(\ge\)2016 với mọi x,y

Dấu '=' xảy ra\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x=0-1=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}-1-y=0\\x=-1\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}y=-1-0=-1\\x=-1\end{cases}}\)

Vậy Min A=2016\(\Leftrightarrow\)x=-1,y=-1

8 tháng 11 2018