Tìm các cặp giá trị nguyên x;y sao cho :x-2xy+y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 5y chia hết cho 5; 65 chia hết cho 5 => 4x chia hết cho 5
Mà (4;5)=1 => x chia hết cho 5
Mà 0 < 4x < 65
=> 0 < x < 17
=> x thuộc {5 ; 10 ; 15}
+ Với x = 5; ta có: 4 × 5 + 5 × y = 65
=> 20 + 5 x y = 65
=> 5 x y = 65 - 20 = 45
=> y = 45 : 5 = 9
+ Với x = 10, ta có: 4 × 10 + 5 x y = 65
=> 40 + 5 × y = 65
=> 5 x y = 65 - 40 = 25
=> y = 25 : 5 = 5
+ Với x = 15, ta có: 4 × 15 + 5 × y = 65
=> 60 + 5 × y = 65
=> 5 x y = 65 - 60 = 5
=> y = 5 : 5 = 1
Vậy x = 5; y = 9 hoặc x = 10; y = 5 hoặc x = 15; y = 1
chắc thek chứ mik ko chắc ăn
- Với \(x=1\) ko thỏa mãn
- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn
- Với \(x\ge3\)
\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)
\(\Rightarrow2\left(x+y\right)⋮xy+2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)
\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)
\(\Rightarrow y=\left\{1;2;3;4\right\}\)
Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu
Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m
Tương tự...
Đáp án: x=10,y=0x=10,y=0
Giải thích các bước giải:
Ta có:
x8−22y+3=712x8−22y+3=712
→x(2y+3)⋅12−2⋅8⋅12=7⋅8⋅(2y+3)→x(2y+3)⋅12−2⋅8⋅12=7⋅8⋅(2y+3)
→12x(2y+3)−192=56(2y+3)→12x(2y+3)−192=56(2y+3)
→12x(2y+3)−56(2y+3)=192→12x(2y+3)−56(2y+3)=192
→(12x−56)(2y+3)=192→(12x−56)(2y+3)=192
→(3x−14)(2y+3)=48→(3x−14)(2y+3)=48
Vì x,y∈Zx,y∈Z
→(3x−14,2y+3)→(3x−14,2y+3) là cặp ước của 4848
Mà 3x−143x−14 chia 33 dư 1,2y+31,2y+3 lẻ
→(3x−14,2y+3)∈{(16,3)}→(3x−14,2y+3)∈{(16,3)}
→(3x,2y)=(30,0)→(3x,2y)=(30,0)
→(x,y)=(10,0)
x(y+3) + y= 4
<=> x(y+3) +(y+3) = 7
<=> (x+1)(y+3)=7
vì x,y thuộc Z => tự làm tiếp
Lời giải:
$x^2-25=y(y+6)$
$\Leftrightarrow x^2-25=y^2+6y$
$\Leftrightarrow x^2-16=y^2+6y+9=(y+3)^2$
$\Leftrightarrow x^2-(y+3)^2=16$
$\Leftrightarrow (x-y-3)(x+y+3)=16$
Do $x,y$ nguyên nên $x-y-3, x+y+3$ cũng là số nguyên. Đến đây là dạng PT tích đơn giản rồi.
Lời giải:
$x^2-25=y(y+6)$
$\Leftrightarrow x^2-25=y^2+6y$
$\Leftrightarrow x^2-16=y^2+6y+9=(y+3)^2$
$\Leftrightarrow x^2-(y+3)^2=16$
$\Leftrightarrow (x-y-3)(x+y+3)=16$
Do $x,y$ nguyên nên $x-y-3, x+y+3$ cũng là số nguyên. Đến đây là dạng PT tích đơn giản rồi.