Cho tam giác ABC vuông tại A, có góc C=30 độ. đường trung trực của BC cắt AC tại M. CMT BM là tia phân giác của góc ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O à 1 điểm nằm trên đường trung trực của BC (O thuộc BC)
Xét \(\Delta ABM\)và \(\Delta OBM\)có
\(\widehat{ABM}=\widehat{MBO}\)(gt)
BM chung
\(\widehat{A}=\widehat{BOM}\)(=90o)
=> \(\Delta ABM\)=\(\Delta OBM\)(ch-gn)
=> \(\widehat{AMB}=\widehat{BMO}\)(cặp góc tương ứng)
Xét\(\Delta MBO\)và\(\Delta MCO\) có
MO chung
\(\widehat{MOB}=\widehat{MOC}\)(=900)
BO=OC
=> \(\Delta MBO\)=\(\Delta MCO\)(2cgv)
=>\(\widehat{BMO}=\widehat{CMO}\)(cgtư)
.=> \(\widehat{AMB}=\widehat{BMO}\)=\(\widehat{CMO}\)
mà \(\widehat{AMB}+\widehat{BMO}+\widehat{CMO}=180^o\)
=>\(\widehat{AMB}=\widehat{BMO}=\widehat{CMO}=60^0\)
=> \(\widehat{ACB}=90^{o^{ }}-60^0=30^0\)
chả hiểu chi cả???????????????????????????????????????????????????????????????????????????????????????????????????
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
Xét △ ABK và △ AMK có
AK là cạnh chung
ABK = AMK = 900
BAK = MAK
=> △ ABK = △ AMK
Ta có:
AB = AM (vì △ ABK = △ AMK )
nên △ABM cân tại A
Trong △ABM cân tại A có:
AK là tia phân giác
=> AK là đường trung trực của BM
a: Xét ΔBAK vuông tại B và ΔMAK vuông tại M có
AK chung
\(\widehat{BAK}=\widehat{MAK}\)
Do đó:ΔBAK=ΔMAK
b: Ta có: ΔBAK=ΔMAK
nên AB=AM và KB=KM
=>AK là đường trung trực của BM
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: DA=DH
b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
Suy ra: DE=DC
hay ΔDEC cân tại D