K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi O à 1 điểm nằm trên đường trung trực của BC (O thuộc BC)

Xét \(\Delta ABM\)và \(\Delta OBM\)

\(\widehat{ABM}=\widehat{MBO}\)(gt)

BM chung

\(\widehat{A}=\widehat{BOM}\)(=90o)

=> \(\Delta ABM\)=\(\Delta OBM\)(ch-gn)

=> \(\widehat{AMB}=\widehat{BMO}\)(cặp góc tương ứng)

Xét\(\Delta MBO\)\(\Delta MCO\) có

MO chung

\(\widehat{MOB}=\widehat{MOC}\)(=900)

BO=OC 

=> \(\Delta MBO\)=\(\Delta MCO\)(2cgv)

=>\(\widehat{BMO}=\widehat{CMO}\)(cgtư)

.=> \(\widehat{AMB}=\widehat{BMO}\)=\(\widehat{CMO}\) 

mà \(\widehat{AMB}+\widehat{BMO}+\widehat{CMO}=180^o\)

=>\(\widehat{AMB}=\widehat{BMO}=\widehat{CMO}=60^0\)

=> \(\widehat{ACB}=90^{o^{ }}-60^0=30^0\)

2 tháng 3 2018

trả hiểu gì cả

31 tháng 5 2020

chả hiểu chi cả???????????????????????????????????????????????????????????????????????????????????????????????????

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

17 tháng 5 2022

Xét △ ABK và △ AMK có

AK là cạnh chung

ABK = AMK = 900

BAK = MAK

=> △ ABK = △ AMK 

 

Ta có:

AB = AM (vì △ ABK = △ AMK )

nên △ABM cân tại A

Trong △ABM cân tại A có:

AK là tia phân giác

=> AK là đường trung trực của BM

a: Xét ΔBAK vuông tại B và ΔMAK vuông tại M có

AK chung

\(\widehat{BAK}=\widehat{MAK}\)

Do đó:ΔBAK=ΔMAK

b: Ta có: ΔBAK=ΔMAK

nên AB=AM và KB=KM

=>AK là đường trung trực của BM

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: DA=DH

b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADE}=\widehat{HDC}\)

Do đó: ΔADE=ΔHDC

Suy ra: DE=DC
hay ΔDEC cân tại D

15 tháng 4 2022

bn cho mik bik đáp án câu c vs và vẽ hình nữa