Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
B C D M H A E K N
a, Xét 2 tam giác vuông : ABM và DBM
BM chung
\(\widehat{ABM}=\widehat{DBM}\)( do BM là phân giác góc B )
\(\Rightarrow\Delta ABM=\Delta DBM\)( cạnh huyền - góc nhọn )
\(\Rightarrow BA=BD\)( 2 cạnh tương ứng )
b. Xét 2 tam giác vuông : ABC và DBE có :
BA = BD ( c/m ỏ câu a )
\(\widehat{B}\)chung
\(\Rightarrow\Delta ABC=\Delta DBE\)( cạnh góc vuông - góc nhọn )
c, Xét 2 tam giác vuông : AMK và DMH
AM = DM ( 2 cạnh tg ứng do ABM = DBM )
\(\widehat{AMK}=\widehat{DMH}\)( đối đỉnh )
\(\Rightarrow\Delta AMK=\Delta DMH\)( cạnh huyền - góc nhọn )
\(\Rightarrow MK=MH\)( 2 cạnh tg ứng )
Xét 2 tam giác vuông : MNK và MNH
MK = HM ( cmt )
MN chung
\(\Rightarrow\Delta MNK=\Delta MNH\)( cạnh huyền - góc vuông )
\(\Rightarrow\widehat{MNK}=\widehat{MNH}\)( 2 góc tg ứng )
=> NM là tia phân giác của \(\widehat{HMK}\)( đpcm ) (1)
d, Do AK = DH ( 2 cạnh tg ứng \(\Delta AMK=\Delta DMH\))
KN = HN ( 2 cạnh tg ứng \(\Delta MNK=\Delta MNH\))
\(\Rightarrow AN=AK+KN=DH+HN=DN\)
Xét 2 tam giác : ABN và DBN
AB = DB ( cmt )
BN chung
AN = BN ( cmt )
\(\Rightarrow\Delta ABN=\Delta DBN\left(c-c-c\right)\)
\(\Rightarrow\widehat{ANB}=\widehat{DNB}\)( 2 góc tg ứng )
=> NB là tia phân giác \(\widehat{AND}\)( 2 )
Từ (1)(2)
=> B , M , N thẳng hàng
ABCDIE12
1) Xét hai tam giác ABI và EBI có:
AB = EB (gt)
B1ˆ=B2ˆ(gt)B1^=B2^(gt)
BI: cạnh chung
Vậy: ΔABI=ΔEBI(c−g−c)ΔABI=ΔEBI(c−g−c)
Suy ra: BAIˆ=BEIˆBAI^=BEI^ (hai góc tương ứng)
Mà BAIˆ=90oBAI^=90o
Do đó: BEIˆ=90oBEI^=90o
2) Xét hai tam giác vuông AID và EIC có:
IA = IE (ΔABI=ΔEBIΔABI=ΔEBI)
AIDˆ=EICˆAID^=EIC^ (đối đỉnh)
Vậy: ΔAID=ΔEIC(cgv−gn)ΔAID=ΔEIC(cgv−gn)
Suy ra: ID = IC (hai cạnh tương ứng)
Do đó: ΔIDCΔIDC cân tại I
3) Ta có: AB = EB (gt)
⇒ΔABE⇒ΔABE cân tại B
⇒⇒ BI là đường phân giác đồng thời là đường trung trực AE
hay BI ⊥⊥ AE (1)
Ta lại có: AB = EB (gt)
AD = EC (ΔAID=ΔEICΔAID=ΔEIC)
=> BD = BC
=> ΔBDCΔBDC cân tại B
=> BI là đường phân giác đồng thời là đường cao của tam giác
hay BI ⊥⊥ DC (2)
Từ (1) và (2) suy ra: AE // DC (đpcm)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Xét △ ABK và △ AMK có
AK là cạnh chung
ABK = AMK = 900
BAK = MAK
=> △ ABK = △ AMK
Ta có:
AB = AM (vì △ ABK = △ AMK )
nên △ABM cân tại A
Trong △ABM cân tại A có:
AK là tia phân giác
=> AK là đường trung trực của BM
a: Xét ΔBAK vuông tại B và ΔMAK vuông tại M có
AK chung
\(\widehat{BAK}=\widehat{MAK}\)
Do đó:ΔBAK=ΔMAK
b: Ta có: ΔBAK=ΔMAK
nên AB=AM và KB=KM
=>AK là đường trung trực của BM