Cho tam giác ABC cân tại A. Gọi D là trung điểm cạnh BC. Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho EDF = ABC. Chứng minh \(BE.CF=\frac{BC^2}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là trung điểm DC
Xét tam giác BDC có:
E là trung điểm DC
M là trung điểm BC
=> EM là đường trung bình
=> EM//BD
=> EM//ID
Ta có: \(AD=\dfrac{1}{2}DC\)
Mà \(DE=\dfrac{1}{2}DC\)
\(\Rightarrow AD=DE=\dfrac{1}{2}AE\)=> D là trung điểm AE
Xét tam giác AME có:
D là trung điểm AE
ID//ME
=> I là trung điểm AM
=> AI=IM
a) \(\frac{MB}{EC}=\frac{DB}{MC}\)
\(\Leftrightarrow MB.MC=EC.DB\)
Mà tg ABC cân tại A => MC = MB
=> \(BM^2=BD.CE\)(đpcm)
b) Xét tg MDE và BDM
\(\widehat{MDE}=\widehat{BDM}\)(gt)
\(\widehat{MDB}=\widehat{EDM}\)(gt)
\(\Rightarrow\Delta MDE~\Delta BDM\)
a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) \(\widehat{BMD}=\widehat{MEC}\)( \(\Delta DBM\)và \(\Delta MCE\)đồng dạng)
Mà BME là góc ngoài tam giác MEC
=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)
\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)
Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)
Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)
Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)