K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Ta có : 

\(A=2013+2013^2+2013^3+2013^4+2013^5+2013^6\)

\(A=\left(2013+2013^2\right)+\left(2013^3+2013^4\right)+\left(2013^5+2013^6\right)\)

\(A=2013\left(1+2013\right)+2013^3\left(1+2013\right)+2013^5\left(1+2013\right)\)

\(A=2013.2014+2013^3.2014+2013^5.2014\)

\(A=2014\left(2013+2013^3+2013^5\right)\)

\(A=2.1007\left(2013+2013^3+2013^5\right)⋮2\)

\(\Rightarrow\)\(A⋮2\)

Vậy \(A⋮2\)

Chúc bạn học tốt ~ 

25 tháng 3 2016

tinh chi vay

22 tháng 3 2015

bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)                                                                                                                                                                                                                       

2 tháng 8 2016

ban tran xuan quynh tra loi dung roi

9 tháng 1 2017

A=5+5^2+5^3+...+5^2013

A=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2011+2^2012+5^2013)

A=155+5^4*(5+5^2+5^3)+...+5^2011*(5+5^2+5^3)

A=155+5^4*155+...+5^2011*155

A=155*(5^4+...+5^2011) chia hết cho 155

tk mk nha

thanks

16 tháng 12 2021

\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)

16 tháng 12 2021

Thank youvui

7 tháng 10

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

24 tháng 10 2018

a)n(n+2013)

xét 2 tr hp.

tr hp 1:n là số lẻ 

=>n+2013 là số chẵn

=>n(n+2013) là số chẵn =>n(n+2013) chia hết cho 2.

tr hp 2:nlà số chẵn

=>n(n+2013) là số chẵn=> n(n+2013) chia hết cho 2.

b)M=21+22+23+24+....+220

M=2.1+2.2+2.4+2.8 +25.1+25.2+25.4+25.8+.......+217.1+217.2+217.4+217.8

M=2(1+2+4+8)+25(1+2+4+8)+....+217(1+2+4+8)

M=2.15+25.15+....+217.15

=>M chiia hết cho 5

31 tháng 10 2018

M = 2+2+23+24+.....+220 chứng tỏ rằng M chia hết cho 5

Số số hạng của tổng là :

(20-1) : 1 +1 = 20 ( số hạng )

Ta ghép 4 số vào 1 nhóm , như vậy có số nhóm là :

20 : 4 = 5 ( nhóm )

Ta có :

M = 2+22+23+24+24+.....+220

     = ( 2 + 22+23+24)+.....+(217+218+219+220)

     = 2.(1+2+3+4)+.....+217.(1+2+3+4)

     = 2.10+....217.10

      = (2+...+217 ) . 10 chia hết cho 5

Vậy ta có điều phải chứng minh.